[1]贾斌,罗晓群,张其林,等.高性能铝合金耗能支撑抗震性能研究[J].世界地震工程,2014,(01):001-11.
 JIA Bin,LUO Xiaoqun,ZHANG Qilin,et al.Study on seismic behaviour of high-performance aluminium alloy energy dissipation braces[J].,2014,(01):001-11.
点击复制

高性能铝合金耗能支撑抗震性能研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2014年01期
页码:
001-11
栏目:
出版日期:
2014-03-31

文章信息/Info

Title:
Study on seismic behaviour of high-performance aluminium alloy energy dissipation braces
作者:
贾斌1 罗晓群1 张其林1 丁娟12
1. 同济大学 土木工程学院, 上海 200092;
2. 精工建筑设计研究总院, 上海 200233
Author(s):
JIA Bin1 LUO Xiaoqun1 ZHANG Qilin1 DING Juan12
1. School of Civil Engineering, Tongji University, Shanghai 200092, China;
2. Jinggong General Institute of Architectural Design and Research Co., Ltd, Shanghai 200233, China
关键词:
铝合金屈曲约束支撑螺栓装配抗震设计有限元分析
Keywords:
aluminium alloybuckling-restrained bracebolted assemblageseismic designfinite element alysis
分类号:
TU512.4;TU311.2
摘要:
对国外已进行的相关铝合金材料及其BRB构件试验进行了分类总结,从强度、延性、应变硬化以及疲劳等结构分析的要点进行了比较研究。经过热处理的铝合金材料其屈服强度较高但延性降低,不同牌号铝合金在循环加载下的应变硬化现象差别较大,但最大应变硬化率不超过1%。采用焊接加劲端板的铝合金BRB的低周疲劳性能比螺栓连接加劲端板的试件差,核芯板中部是否点焊限位塞对铝合金BRB(ALBRB)的低周疲劳性能影响很大。在试验研究的基础上推导了装配式铝合金BRB的整体稳定和局部稳定条件,并对相关设计参数进行了有限元分析验证。
Abstract:
Classification and summarization were conducted for the aluminum alloy material tests and the corresponding buckling restrained brace(BRB) tests performed abroad. The current paper deals with the mechanical features of aluminum alloy,with particular regards to those parameters which are important for structural analysis. By the comparison of the stress-strain curves between the heat treated and non-heat treated aluminum alloy, it is observed that the yield strength of the former is greater than that of the latter, but the ductility is in lower level. The strain hardening vary greatly among different brands of material, but the maximum strain hardening is no more than 1%. It is clear that the low-cycle fatigue strength of the bolt-assembled aluminium alloy buckling restrained brace(ALBRB) was much better than that of the welded one, and the bolt-assembled BRB without spot-welded stoppers possess better low-cycle fatigue performances in contrast with that having spot-welded stoppers. Overall stability and local stability conditions were derived based on relevant experiments, and using finite element method to verify the rationality of the design parameters.

参考文献/References:

[1] Iwata M, Murai M. Buckling-restrained brace using steel mortar planks; performance evaluation as a hystereticdamper. EarthqEngStructDyn 2006; 35(14): 1807-1826.
[2] Eryasar ME, Topkaya C. An experimental study on steel-encasedbuckling‐restrained brace hysteretic dampers.EarthqEngStructDyn 2010; 39(5): 561-581.
[3] Usami T, Lu ZH, Ge HB. A seismic upgrading method for steel arch bridges using buckling-restrained braces.EarthqEngStructDyn2005; 34(4-5): 471-496.
[4] Koetaka Y, Byakuno Y, Inoue K. Experimental verification ofdesign criteria of knee brace damper. in: 8th TaiwanKorea Japan Joint seminar on earthquakeengineering for building structures. 2006. 69-79.
[5] Iwata M, Murai M. Buckling-restrained brace using steel mortarplanks:performance evaluation as a hysteretic damper. EarthqEngStructDyn 2006;35:1807-26.
[6] Usami T, Ge HB, KasaiA.Overall buckling prevention condition of bucklingrestrained braces as a structural control damper. In: 14th world conference on earthquake engineering. 2008.
[7] Ju YK, Kim MH, Kim J, Kim SD. Component tests of buckling-restrained braces with unconstrained length. Engineering Structures 2009;31:507-16.
[8] C.C.Chou, S.Y. Chen. Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces.Engineering Structures 32, 2108-2121, 2010.
[9] AISC, 2005. Seismic provisions for structural steel buildings, Chicago, Illinois.
[10] 李妍, 吴斌, 王倩颖, 等. 防屈曲钢支撑阻尼器的试验研究[J].土木工程学报, 2006, 39(7):9-14. LI Yan, WU Bin, WANG Qianyin, et al. An experimental study of anti-buckling steel damping-braces[J]. China Civil Engineering Journal, 2006, 39(7):9-14.
[11] 程光煜, 叶列平, 许秀珍, 等. 防屈曲耗能钢支撑的试验研究[J].建筑结构学报, 2008, 29(1):31-39. CHENG Guangyu, YE Lieping, XU Xiuzhen, et al. Expermi ental researches on buckling-restrained brace[J]. Journal of Building Structures, 2008, 29(1):31-39.
[12] 宁响亮, 刘军, 张颖, 等.新型防屈曲耗能支撑的设计、试验及其减震性能研究[J].地震工程与工程振动, 2012, 32(1):49-53. NING Xiangliang, LIU Jun, ZHANG Ying, et al. Design, testing and seismic mitigation performance research of a new type of buckling-restrained braces[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(1):49-53.
[13] Usami T. Developing high-performance damage control seismic dampers. Proceedings of the 10th symposium on ductile design method for bridges (Special Lecture), Tokyo, Japan, 2007.
[14] G.De. Matteis, G.Brando, F.M. Mazzolani Pure aluminium: An innovative material for structural applications in seismic engineering.Construction and Building Materials 2012;26: 677-686.
[15] P.Dusicka, J.Tinker.Global restraint in ultra-lightweightbuckling-restrainedbraces. Journal of Composites for construction2013;17:139-150.
[16] UsamiT, Wang C L, Funayama J. Developing high-performance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests. EarthqEngStructDyn 2012;41:643-661.
[17] Dusicka, P., Itani, A. M., and Buckle, I. G. (2007). "Cyclic response of plate steels under large inelastic strains." J. Constr. Steel Res., 63(2), 156-164.
[18] Hopperstad, O. S., Langseth, M., and Remseth, S. (1995). "Cyclic stress strain behavior of alloy AA6060, Part I: Uniaxial experiments and modelling." Int. J. Plast., 11(6), 725-739.
[19] Iwata M, Murai M. Buckling-restrained brace using steel mortar planks; performance evaluation as a hystereticdamper. EarthqEngStructDyn 2006; 35(14): 1807-1826.
[20] Tremblay R, Bolduc P, Neville R, DeVall R. Seismic testing and performance of buckling-restrained bracingsystems. Canadian Journal of Civil Engineering 2006; 33(2): 183-198.
[21] Usami T, Ge HB, Kasai A. Overall buckling prevention condition of buckling-restrained braces as a structural control damper. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[22] Usami T, Sato T, Kasai A. Developing high-performance buckling-restrained braces. Journal of Structural Engineering, JSCE 2009; 55A: 719-729(in Japanese).
[23] Usami T, Wang CL, Funayama J. Low-cycle fatigue tests of a type of buckling restrained braces. Proceedings of 12th East Asia-Pacific Conference on Structural Engineering and Construction, HongKong, 2011.

相似文献/References:

[1]袁钰,吴京.屈曲约束支撑框架Pushover分析的加载模式研究[J].世界地震工程,2010,(02):207.
 YUAN Yu,WU Jing.Research on the lateral load pattern of Pushover analysis for a buckling restrained braced frame[J].,2010,(01):207.
[2]李晓文,孙晓岭,薛强.点接触式防屈曲支撑稳定及延性性能研究[J].世界地震工程,2011,(04):020.
 LI Xiaowen,SUN Xiaoling,XUE Qiang.Study on stability and ductility of point-contact buckling-restrained braces[J].,2011,(01):020.
[3]刘桂,吴京.屈曲约束支撑刚度与屈服力匹配关系研究[J].世界地震工程,2013,(02):138.
 LIU Gui,WU Jing.Research on matching relationship between stiffness and yield capacity of buckling restrained brace[J].,2013,(01):138.

备注/Memo

备注/Memo:
收稿日期:2013-8-30;改回日期:2013-10-12。
基金项目:上海市科技人才计划项目(11XD1404900)
作者简介:贾斌(1985-),男,博士研究生,主要从事大跨空间结构抗震减震研究.E-mail:dr_jiabin@sina.com
通讯作者:罗晓群,副教授,博士.E-mail:luoxiaoqun@tongji.edu.cn
更新日期/Last Update: 1900-01-01