[1]魏鑫,孙国华,王跃,等.近场脉冲地震下半刚接钢框架内填暗竖缝RC墙结构易损性分析[J].世界地震工程,2017,33(04):032-41.
 WEI Xin,SUN Guohua,WANG Yue,et al.Seismic fragility analysis of partially-restrained steel frame with concealed vertical slits RC infill walls subjected to near-fault earthquake[J].,2017,33(04):032-41.
点击复制

近场脉冲地震下半刚接钢框架内填暗竖缝RC墙结构易损性分析
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
33
期数:
2017年04期
页码:
032-41
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
Seismic fragility analysis of partially-restrained steel frame with concealed vertical slits RC infill walls subjected to near-fault earthquake
作者:
魏鑫 孙国华 王跃 王云
苏州科技大学 土木工程学院, 江苏 苏州 215011
Author(s):
WEI Xin SUN Guohua WANG Yue Wang Yun
School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
关键词:
半刚接钢框架暗竖缝内填墙增量动力时程分析近断层地震易损性
Keywords:
partially-restrained steel frameconcealed vertical slitinfill wallIDAnear-faultfragility
分类号:
TU391
摘要:
为研究半刚接钢框架内填暗竖缝RC墙结构(简称"PSRCW"结构)在近场脉冲地震作用下的易损性能,基于增量动力时程分析方法建立了4个按MECE能量谱设计的PSRCW结构在不同性态水平下的地震易损性曲线,重点考察了层数的影响。研究结果表明:在近场脉冲地震作用下,PSRCW结构对应于多遇地震水准达到基本完好(IO)状态的超越概率在2.76%~5.98%之间,偶遇地震水准达到中等破坏(LS)状态的超越概率在16.88%~37.35%之间,罕遇地震水准达到倒塌(C)状态的超越概率在4.86%~39.92%之间。层数对PSRCW结构在近场脉冲地震作用下的易损性曲线有显著影响,随着层数的增加PSRCW结构达到某一性态水平的超越概率也呈增大趋势。
Abstract:
In order to investigate the seismic fragility curve of partially-restrained steel frame with concealed vertical slits RC infill wall (PSRCW) subjected to near-fault earthquake records with velocity pulse effect, the seismic fragility curves of four PSRCW structures designed according to MECE energy spectrum at the different structural performance levels were developed based on the incremental dynamic analysis (IDA) method, and the effect of storey number was also considered. The results show that the probability of exceedance at frequent earthquake level for four PSRCW structures reaching the Immediately Occupation (IO) structural performance level ranges from 2.76% to 5.98%, the probability of exceedance at occasionally earthquake level for four PSRCW structures reaching the Life Safety (LS) structural performance level ranges from 16.88% to 37.35%, and the probability of exceedance at rare earthquake level for four PSRCW structures reaching the Collapse (C) structural performance level ranges from 4.86% to 39.92%. Additionally, the storey number has an important influence on the seismic fragility curves of PSRCW structures under near-fault earthquake records with velocity pulse effect, the probability of exceedance for PSRCW structure reaching certain structural performance level shows an increasing tendency with the increase of storey number.

参考文献/References:

[1] SUN G, HE R, GU Q, et al. Cyclic behavior of partially-restrained steel frame with RC infill walls[J]. Journal of Constructional Steel Research, 2011, 67(12):1821-1834.
[2] TONG X T, HAJJAR J F, SCHULTZ A E, et al. Cyclic behavior of steel frame structures with composite reinforced concrete infill walls and partially-restrained connections[J]. Journal of Constructional Steel Research, 2005,61(4):531-552.
[3] 孙国华, 顾强, 何若全, 等. 半刚接钢框架内填暗竖缝RC墙结构滞回性能试验研究[J]. 建筑结构学报, 2010, 31(9):16-26. SUN Guohua, GU Qiang, HE Ruoquan, et al. Experimental investigation of partially-restrained steel frame with concealed vertical slits RC infill walls[J]. Journal of Building Structures, 2010, 31(9):16-26. (in Chinese)
[4] 孙国华, 顾强, 张振涛, 等. 半刚接钢框架内填不同构造措施RC墙子结构抗震性能试验研究[J]. 建筑结构学报, 2014, 35(10):21-30. SUN Guohua, GU Qiang, ZHANG Zhentao, et al. Experimental investigation on seismic behavior of PR steel frame subassemblage with different type of RC infill walls[J]. Journal of Building Structures, 2014, 35(10):21-30. (in Chinese)
[5] DAN M G, WILSON P R, THOMAS G G, et al. Seismic response and fragility evaluation for an eastern US NPP including soil-structure interaction effects[J]. Reliability Engineering & System Safety, 1998,62(3):197-214.
[6] ELLINGWOOD B R. Earthquake risk assessment of buildings structures[J]. Reliability Engineering & System Safety, 2001,74(3):251-262.
[7] SCHOTANUS M I J, FRANCHIN P, LUPOI A, et al. Seismic fragility analysis of 3D structures[J]. Structural Safety, 2004, 26(4):421-441.
[8] ZAREIAN F, KRAWINKLER H. Assessment of probability of collapse and design for collapse safety[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1901-1914.
[9] KAZANTZI A K, RIGHINIOITS T D, CHRYSSANTHOPOULOS M K. The effect of joint ductility on the seismic fragility of a regular moment resisting steel frame designed to EC8 provisions[J]. Journal of Constructional Steel Research, 2008, 64(9):987-996.
[10] WONG K K F, HARRIS J L. Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy[J]. The Structural Design of Tall & Special Buildings, 2012, 21(21):296-310.
[11] 刘晶波, 刘阳冰, 闫秋实, 等. 基于性能的方钢管混凝土框架结构地震易损性分析[J]. 土木工程学报, 2010, 43(2):39-47. LIU Jingbo, LIU Yangbing, YAN Qiushi, et al. Performance-based seismic fragility analysis of CFST frame structures[J]. China Civil Engineering Journal, 2010, 43(2):39-47. (in Chinese)
[12] 陆新征, 施炜, 张万开, 等. 三维地震动输入对IDA倒塌易损性分析的影响[J]. 工程抗震与加固改造, 2011, 33(6):1-7. LU Xinzheng, SHI Wei, ZHANG Wankai, et al. Influence of three-dimensional ground motion input on IDA-based collapse fragility analysis[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(6):1-7. (in Chinese)
[13] 吴巧云, 朱宏平, 樊剑. 基于性能的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2012, 29(9):117-124. WU Qiaoyun, ZHU Hongping, FAN Jian. Performance-based seismic fragility analysis of RC frame structures[J]. Engineering Mechanics, 2012, 29(9):117-124. (in Chinese)
[14] 于晓辉, 吕大刚, 郑浩琴. 基于结构典型失效模式的地震侧向倒塌易损性分析[J]. 建筑结构学报, 2014, 35(8):8-14. YU Xiaohui, LÜ Dagang, ZHENG Haoqing. Seismic sideway collapse fragility analysis based on structural typical failure modes[J]. Journal of Building Structures, 2014, 35(8):8-14. (in Chinese)
[15] 柳春光, 任文静, 夏春旭. 考虑钢筋锈蚀的近海隔震桥梁地震易损性分析[J]. 自然灾害学报, 2016, 25(6):120-129. LIU Chunguang, REN Wenjing, XIA Chunxu. Vulnerability analysis of offshore isolation bridges considering reinforcement corrosion[J]. Journal of Natural Disasters, 2016, 25(6):120-129. (in Chinese)
[16] 孙国华, 顾强, 方有珍, 等. 半刚接钢框架内填暗竖缝RC墙结构基于性态的地震易损性分析[J]. 振动工程学报, 2016, 29(3):410-419. SUN Guohua, GU Qiang, FANG Youzhen, et al. Performance-based seismic fragility analysis of partially-restrained steel frame with concealed vertical slit RC infill walls[J]. Journal of Vibration Engineering, 2016, 29(3):410-419. (in Chinese)
[17] 魏鑫. 近断层地震下钢框架内填暗竖缝RC墙结构的能量设计方法[D]. 苏州:苏州科技大学硕士论文, 2017. WEI Xin. Energy-based seismic design method of steel frame with concealed vertical slit RC infill walls under near-fault earthquake[D]. Suzhou:Suzhou University of Science and Technology, 2017. (in Chinese)
[18] KALKAN E, KUNNATH S K. Effects of fling-step and forward directivity on the seismic response of buildings[J]. Earthquake Spectra, 2006, 22(2):367-390.
[19] SUN Guohua, LI Qicai, GU Qiang, et al. Performance level thresholds and damage evaluation for composite partially-restrained steel frame-reinforced concrete infill wall with concealed vertical slits[J]. Bulletin of Earthquake Engineering, 2017, DOI:10.1007/s10518-017-0094-x.
[20] 孙国华, 顾强, 方有珍, 等. 半刚接钢框架内填暗竖缝RC墙结构的简化滞回分析模型[J]. 计算力学学报, 2016, 33(2):223-230. SUN Guohua, GU Qiang, FANG Youzhen, et al. Composite inclined strut hysteretic model for PR steel frame with concealed vertical slit RC infill walls[J]. Chinese Journal of Computational Mechanics, 2016, 33(2):223-230. (in Chinese)
[21] GB50011-2010(2016年版). 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2016. GB50011-2010(2016) Code for seismic design of buildings[S]. Beijing:Building Industry Press of China, 2016. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-03-07;改回日期:2016-05-09。
基金项目:国家自然科学基金项目(51108292);江苏省“青蓝工程”中青年学术带头人资助项目,苏州科技大学研究生创新项目(SKCX15-048)
作者简介:魏鑫(1990-),男,硕士研究生,主要从事钢结构及钢-混凝土组合结构抗震研究.E-mail:andxxzy@163.com
通讯作者:孙国华(1978-),男,副教授,博士,主要从事钢结构及钢-混凝土组合结构抗震研究.E-mail:sungh-529@163.com
更新日期/Last Update: 1900-01-01