[1]潘毅,高宪,易路行,等.基于剪力比和刚度比的防屈曲支撑-RC框架抗震设计方法分析[J].世界地震工程,2017,33(04):059-67.
 PAN Yi,GAO Xian,YI Luxing,et al.Investigation of the seismic design methods of buckling-restrained braced-reinforced concrete frame structures based on shear ratio and stiffness ratio[J].,2017,33(04):059-67.
点击复制

基于剪力比和刚度比的防屈曲支撑-RC框架抗震设计方法分析
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
33
期数:
2017年04期
页码:
059-67
栏目:
出版日期:
2017-11-25

文章信息/Info

Title:
Investigation of the seismic design methods of buckling-restrained braced-reinforced concrete frame structures based on shear ratio and stiffness ratio
作者:
潘毅1 高宪1 易路行13 白久林2
1. 西南交通大学 土木工程学院, 四川 成都 610031;
2. 重庆大学 土木工程学院, 重庆 400045;
3. 佛山市铁路投资建设集团有限公司, 广东 佛山 528000
Author(s):
PAN Yi1 GAO Xian1 YI Luxing13 BAI Jiulin2
1. School of Civil Engineering, Southwest Jiaotong University, Sichuan Chengdu 610031, China;
2. School of Civil Engineering, Chongqing University, Chongqing 400044, China;
3. Foshan Railway Investment Construction Group Co., Ltd., Foshan 528000, China
关键词:
防屈曲支撑剪力比刚度比混凝土框架抗震设计
Keywords:
buckling-restrained bracesshear ratiostiffness ratioreinforced concrete frame structuresseismic design
分类号:
TTU398+.9
摘要:
防屈曲支撑(buckling-restrained braces,BRB)不仅为结构提供抗侧刚度,且在地震中可通过芯材的屈服吸收能量,从而减少输入主体结构的能量,有效地改善了结构的抗震性能。防屈曲支撑在结构体系中的合理配置是影响结构抗震性能的重要因素。对于防屈曲支撑-钢筋混凝土(Reinforced Concrete,RC)框架结构,主体结构刚度主要由梁柱构件截面尺寸决定,而主体结构强度由截面尺寸和配筋共同决定。基于此,以BRB-RC框架结构为例,分别采用基于剪力比和刚度比的设计方法进行BRB参数设计,对2种方法设计后的结构进行反应谱及弹塑性时程分析,从周期、层间位移角最大值、滞回耗能比及滞回曲线等方面对结构抗震性能进行评估和对比分析。分析获得了基于刚度比和剪力比设计方法的优缺点,为BRB-RC框架结构的减震设计提供了参考。
Abstract:
In addition to providing lateral stiffness for the structure, Buckling Restrained Braces (BRB) can also absorb energy in earthquake through the yielding of core material and thus the energy input of the main structure will be reduced so that the seismic performance of the structure will be improved effectively. The reasonable configuration of the Buckling Restrained Brace is an important factor affecting the seismic performance of the structure. For one buckling restrained braced concrete frame structure, the main structural stiffness is mainly determined by the sections of beams and columns while the strength of the main structure is jointly determined by the sections and reinforcement.Based on this, taking a BRB-RC frame structure as an example, the paper chose the BRB parameters based on the shear ratio and stiffness ratio methods. Then,the response spectrum and time history analysis by these two methods were analyzed. Finally, a comparison study and evaluation of the seismic performance of the structure partly from four aspects including period, the maximum interstory drift ratio, hysteretic energy ratio and hysteresis curve were conducted in this paper. The advantages and disadvantages of the design methods based on the stiffness ratio and shear ratio was discussed in this paper,which providles a reference for the design of BRB-RC frame structure.

参考文献/References:

[1] GB50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press, 2010.
[2] 建筑消能减震技术规程[S]. 北京:中国建筑工业出版社, 2013. JGJ297-2013 Technical Specification for Seismic Energy Dissipation of Buildings[S]. Beijing:China Architecture & Building Press, 2013.
[3] CLARK P, AIKEN I, KASSAI K, et al. Design procedures for buildings incorporating hysteretic damping devices. Proceedings. In:68th Annual Convention SEAOC, Sacramento, CA, 1999.
[4] KIM J, SEO Y. Seismic design of low-rise steel frames with buckling-restrained braces[J]. Engineering Structures. 2004, 26(5):543-551.
[5] 刘建彬. 防屈曲支撑及防屈曲支撑钢框架设计理论研究[D].北京:清华大学,2005. LIU Jianbin. Research on the design theory of buckling-restrained braces and buckling-restrained braced framesD]. Beijing:Tsinghua University, 2005.
[6] CHOI H, KIM J. Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum[J]. Engineering Structures. 2006, 28:304-311.
[7] 赵瑛,郭彦林. 防屈曲支撑框架设计方法研究[J]. 建筑结构, 2010,40(1):38-43. ZHAO Ying, GUO Yanlin. Research on design method of buckling restrained braced frames[J]. Building Structures, 2010, 40(1):38-43.
[8] 马宁. 全钢防屈曲支撑及其钢框架结构抗震性能与设计方法[D].哈尔滨:哈尔滨工业大学,2010. MA Ning. Seismic beahavior and design method of all-steel buckling restrained braces and steel framesD]. Harbin:Harbin Institute of Technology, 2010.
[9] 潘毅,耿鹏飞,郭阳照,等. 两阶段耗能屈曲约束支撑体系减震效果分析[J]. 西南交通大学学报, 2015, 50(5):858-865. PAN Yi, GENG Pengfei, GUO Yangzhao, et al. Analysis of damping effect in two-stage energy dissipation damping system of buckling restrained braces[J]. Journal of Southwest Jiaotong Uniwersity, 2015, 50(5):858-865.
[10] BAI JIULIN, OU JINPING. Earthquake-resistant design of buckling-restrained braced RC moment frames using performance-based plastic design method[J]. Engineering Structures, 2016, 107:66-79.
[11] 白久林, 金双双, 欧进萍. 防屈曲支撑-钢筋混凝土框架结构基于能量平衡的抗震塑性设计[J]. 建筑结构学报, 2017, 38(1):125-134. BAI Jiulin, JIN Shuangshuang, OU Jinping. Seismic plastic design of buckling-restrained braced-RC frame structures based on energy balance[J]. Journal of Building Structures, 2017, 38(1):125-134.
[12] 白久林. 钢筋混凝土框架结构地震主要失效模式分析与优化[D]. 哈尔滨工业大学, 2015. BAI Jiulin. Main seismic failure mode analyses and optimization of reinforced concrete frame structures[D]. Harbin Institute of Technology, 2015.
[13] 朱江,李帼昌,马传正. 屈曲约束支撑-钢筋混凝土框架结构的设计与分析[J]. 建筑结构, 2012,42(12):54-58,93. ZHU Jiang, LI Jinchang, MA Chuanzheng. Analysis and design on buckling restrained braces-reinforced concrete frame structures[J]. Building Structures, 2012, 42(12):54-58,93.
[14] 易路行. 基于剪力比的屈曲约束支撑-混凝土框架结构设计方法研究[D].成都:西南交通大学,2016. YI Luxing. Study on the seismic design of buckling-restrained braced-reinforced concrete frame structures based on shear ratio[D]. Chengdu:Southwest Jiaotong University, 2016.
[15] 北京金土木软件技术有限公司. SAP2000中文版使用指南[M].北京:人民交通出版社,2012. Beijing Golden Civil Software Technology Co Ltd. User Guide Manual of SAP2000[M]. Beijing:China Communication Press, 2012.
[16] 李鸿光,何旭,孟光. Bouc-Wen滞回系统动力学特性的仿真研究[J]. 系统仿真学报, 2004,16(9):2009-2011,2036. LI Hongguang, HE Xu, MENG Guang. Numerical simulation for dynamic characteristics of Bouc-Wen hysteretic system[J]. Journal of System Simulation, 2004,16(9):2009-2011, 2036.
[17] 刘博文,徐开,刘畅,等. Perform-3D在抗震弹塑性分析与结构性能评估中的应用[M]. 北京:中国建筑工业出版社,2014. LIU Bowen, XU Kai, LIU Chang, et al. Perform-3D in the Seismic Elastoplastic Analysis and the Application of the Structural Performance Evaluation[M]. Beijing:China Architecture & Building Press, 2014.
[18] KENT D C, PARK R. Flexural members with confined concrete[J]. Journal of the Structural Division. 1970, 97(7):1969-1990.
[19] FARZAD NAEIM,JAMES M.KELLY. Design of seismic isolation structures from theory to practic[M]. New York:John Wilcy & Sons Inc, 1999.

相似文献/References:

[1]王永贵,高尔新.端部加强型双重钢管防屈曲支撑试验研究[J].世界地震工程,2012,(04):122.
 WANG Yonggui,GAO Erxin.Experimental study on end enhanced double-steel tube buckling-restrained brace[J].,2012,(04):122.
[2]李小龙,王泽军,冯曼,等.考虑填充墙作用的消除底部薄弱层的防屈曲支撑简化设计方法[J].世界地震工程,2017,33(01):237.
 LI Xiaolong,WANG Zejun,FENG Man,et al.Simplified design method of buckling restraining brace to eliminate weak layer of bottom considering effect of infill walls[J].,2017,33(04):237.
[3]李晓莉,邹雨鹤,王东升.强震下拱式体系桥梁震害特征及抗震研究[J].世界地震工程,2018,34(02):033.
 LI Xiaoli,ZOU Yuhe,WANG Dongsheng.Seismic damage characteristics and research of arch bridges under strong earthquake[J].,2018,34(04):033.

备注/Memo

备注/Memo:
收稿日期:2016-06-07;改回日期:2016-08-03。
基金项目:国家重点研发计划(2016YFC0802205);国家自然科学基金项目(51608073);四川省科技支撑计划项目(2014SZ0110)
作者简介:潘毅(1977-),男,副教授,博士生导师,主要从事建筑结构抗震与减震.E-mail:panyi@swjtu.edu.cn
通讯作者:白久林(1985-),男,博士,讲师,主要从事结构地震失效模式优化与控制研究.E-mail:baijiulin@cqu.edu.cn
更新日期/Last Update: 1900-01-01