[1]王亮,薄景山,李孝波,等.砂土液化判别方法研究若干进展[J].世界地震工程,2017,33(04):141-150.
 WANG Liang,BO Jingshan,LI Xiaobo,et al.Research progress on methods of sand liquefaction potential evaluating[J].,2017,33(04):141-150.
点击复制

砂土液化判别方法研究若干进展
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
33
期数:
2017年04期
页码:
141-150
栏目:
出版日期:
2017-11-25

文章信息/Info

Title:
Research progress on methods of sand liquefaction potential evaluating
作者:
王亮1 薄景山12 李孝波2 常晁瑜12
1. 中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 防灾科技学院, 河北 三河 065201
Author(s):
WANG Liang1 BO Jingshan12 LI Xiaobo2 CHANG Chaoyu12
1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China;
2. Institute of Disaster Prevention, Sanhe 065201, China
关键词:
地震砂土液化判别方法研究进展研究方向
Keywords:
earthquakesand liquefactionevaluation methodresearch progressresearch area
分类号:
P315.9
摘要:
由于砂土液化是导致地基失效和上部结构受损的重要原因之一,场地液化判别是饱和砂土场地工程建设中的必要环节,因此砂土液化判别方法研究是工程抗震设计中的一个重要课题。回顾了砂土液化判别方法的研究历史,总结了国内外进行液化判别的主要方法和研究进展,对各判别方法进行了简要述评。在分析当前研究成果的基础上,指出了已有液化判别方法中存在的一些问题,并针对这些问题进行了讨论,包括液化评价指标的获取、标准贯入锤击数基准值的可靠性、液化判别的概率表达和液化判别方法的适用性等。这一工作为从事该领域的研究工作以及今后的研究方向提供了一定参考。
Abstract:
Sand liquefaction is an important reason for ground failure and superstructure damage, and site liquefaction analysis is a essential link in engineering construction site evaluation. Therefore, the research of sand liquefaction potential evaluating methods is an important subject in engineering seismic design. The recent advances of main methods for sand liquefaction potential evaluating at home and abroad are summarized, and the brief review of the different methods are made in this paper. Based on analysing the present study results, the existing problems of evaluating liquefaction potential are pointed out, and the proposals for further research are discussed, including acquisition of liquefaction evaluation indexes, reliability of reference value of the standard penetration test, probability prediction method of soil liquefaction, applicability of the liquefaction potential evaluating methods.The works done may provide a reference for the next work and area engaged in the research of this field.

参考文献/References:

[1] 王刚, 张建民. 地震液化问题研究进展[J]. 力学进展, 2007, 37(4):575-589. WANG Gang, ZHANG Jianmin. Recent advances in seismic liquefaction research[J]. Advances in Mechanics, 2007, 37(4):575-589. (in Chinese)
[2] 袁晓铭, 孙锐. 我国规范液化分析方法的发展设想[J]. 岩土力学, 2011, 32(2):351-358. YUAN Xiaoming, SUN Rui. Proposals of liquefaction analytical methods in Chinese seismic design provisions[J]. Rock and Soil Mechanics, 2011, 32(2):351-358. (in Chinese)
[3] 陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10):2737-2755. CHEN Guoxing, JIN Dandan, CHANG Xiangdong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10):2737-2755. (in Chinese)
[4] 谢定义. 土动力学[M]. 北京:高等教育出版社, 2011. XIE Dingyi. Soil Dynamics[M]. Beijing:Higher Education Press, 2011. (in Chinese)
[5] 张克绪, 谢君斐. 土动力学[M]. 北京:地震出版社, 1989. ZHANG Kexu, XIE Junfei. Soil Dynamics[M]. Beijing:Seismological Press, 1989. (in Chinese)
[6] TJ 11-78工业与民用建筑抗震设计规范[S]. 北京, 1979. TJ 11-78 Code for Seismic Design of Industrial and Civil Buildings[S]. Beijing, 1979. (in Chinese)
[7] GBJ 11-89建筑抗震设计规范[S]. 北京:中国建筑工业出版社,1989. GBJ 11-89 Cord for Seismic Design Buildings[S]. Beijing:China Building Industry Press, 1989. (in Chinese)
[8] GB50011-2001建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2001. GB50011-2001 Cord for Seismic Design Buildings[S]. Beijing:China Building Industry Press, 2001. (in Chinese)
[9] GB50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2010. GB50011-2010 Cord for Seismic Design Buildings[S]. Beijing:China Building Industry Press, 2010. (in Chinese)
[10] GB50487-2008水利水电工程地质勘察规范[S]. 北京:中国计划出版社, 2009. GB50487-2008 Code for Engineering Geological Investigation of Water Resources and Hydropower[S]. Beijing:China Planning Press, 2009. (in Chinese)
[11] JTS146-2012水运工程抗震设计规范[S]. 北京:人民交通出版社, 2012. JTS146-2012 Code for Seismic Design of Water Transportation Engineering[S]. Beijing:China Communication Press, 2012. (in Chinese)
[12] CASTRO G. Liquefaction and cyclic mobility of saturated sands[J]. Journal of the Geotechnical Engineering Division, 1975, 101(6):551-569.
[13] CASTRO G, CHRISTIAN J T. Shear strength of soils and cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1976, 102:887-894.
[14] POULOS S J, CASTRO G, FRANCE J W. Liquefaction evaluation procedure[J]. Journal of Geotechnical Engineering, 1985, 111(6):772-792.
[15] 赵成刚, 尤昌龙. 饱和砂土液化与稳态强度[J]. 土木工程学报, 2001, 34(3):90-96. ZHAO Chenggang, YOU Changlong. Liquefaction and steady state strength[J]. China Civil Engineering Journal, 2001, 34(3):90-96. (in Chinese)
[16] DAVIS R O, BERRILL J B. Energy dissipation and seismic liquefaction in sands[J]. Earthquake Engineering and Structural Dynamics, 1982, 10:59-68.
[17] LAW K T, CAO Y L, HE G N. An energy approach for assessing seismic liquefaction potential[J]. Canadian Geotechnical Journal, 1990, 27(3):320-329.
[18] TRIFUNAC M D. Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(6):419-426.
[19] KAYEN R E, MITCHELL J K. Assessment of liquefaction potential during earthquakes by Arias intensity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12):1162-1174.
[20] CHRISTIAN J T, SWIGER W F. Statistics of liquefaction and SPT results[J]. Journal of the Geotechnical Engineering Division, 1975, 101(11):1135-1150.
[21] 王余庆, 栾芳, 韩清宇, 等. 预测轻亚粘土液化势的统计公式[J]. 岩土工程学报, 1980, 2(3):102-112. WANG Yuqing, LUAN Fang, HAN Qingyu, et al. Formulae for predicting liquefaction potential of clayey silt as derived from a statistical method[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(3):102-112. (in Chinese)
[22] SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of Soil Mechanics & Foundations Division, 1971.
[23] SEED H B, IDRISS I M, Arango I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109(3):458-482.
[24] SEED H B, Tokimatsu K, Harder L F, et al. Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12):1425-1445.
[25] YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001.
[26] FUKUTAKE K, OHTSUKI A, SATO M, et al. Analysis of saturated dense sand-structure system and comparison with results from shaking table test[J]. Earthquake Engineering & Structural Dynamics, 1990, 19(7):977-992.
[27] BS EN 1998-5:2004 Eurocode 8:Design of Structures for Earthquake Resistance, Part 5:Foundation, Retaining Structure and Geotechnical Engineering[S]. London:BSI, 2004.
[28] DOBRY R, LADD R S, POWELL D, et al. Prediction of pore water pressure build up and liquefaction of sands during earthquakes by the cyclic strain method[J]. NBS Building Science Series 138, National Bureau of Standards, Maryland, 1982.
[29] TOKIMATSU K, KUWAYAMA S, TAMURA S. Liquefaction potential evaluation based on rayleigh wave investigation and its comparison with field behavior[C]. Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1991.
[30] 汪闻韶. 关于饱和砂土液化机理和判别方法的某些探讨[C]. 水利水电科学研究院科学研究论文集. 北京:水利电力出版社, 1984. WANG Wenshao. Discussion on mechanism of saturation sand soil liquefaction and discriminant method[C]. Proceedings of Water Resources and Hydropower Research. Beijing:Water Resources and Hydropower Press, 1984. (in Chinese)
[31] 石兆吉. 判别水平土层液化势的剪切波速法[J]. 水文地质工程地质, 1986, 4:55-61. SHI Zhaoji. Shear wave velocity based horizontal soil liquefaction evaluation[J]. Hydrogeology and Engineering Geology, 1986, 4:55-61. (in Chinese)
[32] 石兆吉, 郁寿松, 丰万玲. 土壤液化势的剪切波速判别法[J]. 岩土工程学报, 1993, 15(1):74-80. SHI Zhaoji, YU Shousong, FENG Wanling. Shear wave velocity based soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1):74-80. (in Chinese)
[33] 周燕国, 陈云敏, 柯瀚. 砂土液化势剪切波速简化判别法的改进[J]. 岩石力学与工程学报, 2005, 24(13):2369-2375. ZHOU Yanguo, CHEN Yunmin, KE Han. Improvement of simplified procedure for liquefaction potential evaluation of sands by shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13):2369-2375. (in Chinese)
[34] 曹振中, 袁晓铭. 砂砾土液化的剪切波速判别方法[J]. 岩石力学与工程学报, 2010, 29(5):943-951. CAO Zhenzhong, YUAN Xiaoming. Shear wave velocity-based approach for evaluating gravel soils liquefaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5):943-951. (in Chinese)
[35] OLSEN R S. Liquefaction analysis using the cone penetrometer test[C]. Proceedings of the 8th World Conference on Earthquake Engineering. San Francisco:Englewood Cliffs, 1984:247-254.
[36] ROBERTSON P K, WRIDE C E. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3):442-459.
[37] ROBERTSON P K. Comparing CPT and Vs liquefaction triggering methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015:141(9):1-10.
[38] MOSS R E, SEED R B, KAYEN R E, et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006.
[39] 周神根. 静力触探判别砂土液化[J]. 岩土工程学报, 1980, 2(3):38-45. ZHOU Shengen. Evaluation of the liquefaction of sand by static cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(3):38-45. (in Chinese)
[40] GB50021-2001岩土工程勘察规范[S]. 北京:中国建筑工业出版社, 2009. GB50021-2001 Code for Investigation of Geotechnical Engineering[S]. Beijing:China Building Industry Press, 2009. (in Chinese)
[41] TB1008-2003铁路工程地质原位测试规程[S]. 北京:中国铁道出版社, 2003 TB1008-2003 Code for In-situ Measurement of Railway Engineering Geology[S]. Beijing:China Railway Publishing House, 2003. (in Chinese)
[42] 李兆焱, 孙锐, 曹振中, 等. 静力触探法对巴楚地震液化判别的适用性[J]. 岩土力学, 2010, 31(12):3907-3912. LI Zhaoyan, SUN Rui, CAO Zhenzhong, et al. Feasibility of cone penetration test to evaluating Bachu earthquake liquefaction[J]. Rock and Soil Mechanics, 2010, 31(12):3907-3912. (in Chinese)
[43] LIAO S S C, VENEZIANO D, WHITMAN R V. Regression models for evaluating liquefaction probability[J]. Journal of Geotechnical Engineering, 1988, 114(4):389-411.
[44] JUANG C H, CHEN C J, JIANG T, et al. Risk-based liquefaction potential evaluation using standard penetration tests[J]. Canadian Geotechnical Journal, 2000, 37(6):1195-1208.
[45] JUANG C H, YUAN H, LEE D H, et al. Simplified cone penetration test-based method for evaluating liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1):66-80.
[46] 潘建平, 孔宪京, 邹德高. 基于Logistic回归模型的砂土液化概率评价[J]. 岩土力学, 2008, 29(9):2567-2571. PAN Jianping, KONG Xianjing, ZOU Degao. Probabilistic evaluation of sand liquefaction based on Logistic regression model[J]. Rock and Soil Mechanics, 2008, 29(9):2567-2571. (in Chinese)
[47] 袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报, 2014, 47(4):99-108. YUAN Xiaoming, CAO Zhenzhong. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal, 2014, 47(4):99-108. (in Chinese)
[48] 孙锐, 赵倩玉, 袁晓铭. 液化判别的双曲线模型[J]. 岩土工程学报, 2014, 36(11):2061-2068. SUN Rui, ZHAO Qianyu, YUAN Xiaoming. Hyperbolic model for estimating liquefaction potential of sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11):2061-2068. (in Chinese)
[49] 汪明武, 罗国煜. 可靠性分析在砂土液化势评价中的应用[J]. 岩土工程学报, 2000, 22(5):542-544. WANG Mingwu, LUO Guoyu. Application of reliability analysis to assessment of sand liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5):542-544. (in Chinese)
[50] 佘跃心, 刘汉龙, 高玉峰. 场地液化势评价概率模型[J]. 工程勘察, 2002(5):4-7. SHE Yuexin, LIU Hanlong, GAO Yufeng. Probabilistic model for the evaluation of site liquefaction potential[J]. Geotechnical Investigation & Surveying, 2002(5):4-7. (in Chinese)
[51] 佘跃心. 砂土液化判别方法可靠性评价[J]. 岩土力学, 2004, 25(5):803-807. SHE Yunxin. Probability evaluation of liquefaction distinguishing method of sands[J]. Rock and Soil Mechanics, 2004, 25(5):803-807. (in Chinese)
[52] 陈国兴, 孔梦云, 李小军, 等. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 2015, 36(1):9-27. CHEN Guoxing, KONG Mengyun, LI Xiaojun, et al. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 2015, 36(1):9-27. (in Chinese)
[53] 孔梦云, 陈国兴, 李小军, 等. 以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J]. 岩土力学, 2015, 36(5):1239-1252. KONG Mengyun, CHEN Guoxing, LI Xiaojun, et al. Shear wave velocity and peak ground acceleration based deterministic and probabilistic assessment of seismic soil liquefaction potential[J]. Rock and Soil Mechanics, 2015, 36(5):1239-1252. (in Chinese)
[54] 蔡煜东, 宫家文, 姚林声. 砂土液化预测的人工神经网络模型[J]. 岩土工程学报, 1993, 15(6):53-58. CAI Yudong, GONG Jiawen, YAO Linsheng. Artificial neural network model for prediction of liquefaction of sandy soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(6):53-58. (in Chinese)
[55] 任文杰, 苏经宇, 窦远明, 等. 砂土液化判别的人工神经网络方法[J]. 河北工业大学学报, 2002, 31(2):21-25. REN Wenjie, SU Jingyu, DOU Yuanming, et al. A neural network model for predicting sand liquefaction[J]. Journal of Hebei University of Technology, 2002, 31(2):21-25. (in Chinese)
[56] 陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3):301-305. CHEN Guoxing, LI Fangming. Probabilistic estimation of sand liquefaction based on neural network model of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3):301-305. (in Chinese)
[57] 范付松, 胡新丽, 李长冬, 等. 基于广义回归神经网络的砂土液化综合判别方法[J]. 煤田地质与勘探, 2012, 40(4):47-51. FAN Fusong, HU Xinli, LI Changdong, et al. Integrated evaluation of sand liquefaction based on generalized regression neural network[J]. Coal Geology & Exploration, 2012, 40(4):47-51. (in Chinese)
[58] 周锡元, 苏经宇, 樊水荣. 液化危害评价的模糊概率方法及其应用[J]. 地震工程与工程振动, 1992, 12(4):93-101. ZHOU Xiyuan, SU Jingyu, FAN Shuirong. Fuzzy-probability method for soil liquefaction hazard evaluation and its application[J]. Earthquake Engineering and Engineering Vibration, 1992, 12(4):93-101. (in Chinese)
[59] 翁焕学. 砂土地震液化模糊综合评判实用方法[J]. 岩土工程学报, 1993, 15(2):74-79. WENG Huanxue. Fuzzy synthetic methods of appraisal of sand liquefaction during earthquake[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(2):74-79. (in Chinese)
[60] 赵艳林, 杨绿峰, 吴敏哲. 砂土液化的灰色综合评判[J]. 自然灾害学报, 2000, 9(1):72-79. ZHAO Yanlin, YANG Lufeng, WU Minzhe. Grey synthetical evaluation of liquefaction of sands[J]. Journal of Natural Disasters, 2000, 9(1):72-79. (in Chinese)
[61] 薛新华, 张我华, 刘红军. 砂土地震液化的模糊综合评判法[J]. 重庆建筑大学学报, 2006, 28(1):55-58,79. XUE Xinhua, ZHANG Wohua, LIU Hongjun. Comprehensive fuzzy evaluation method for sand liquefaction[J]. Journal of Chongqing Jianzhu University, 2006, 28(1):55-58,79. (in Chinese)
[62] 刘章军, 叶燎原, 彭刚. 砂土地震液化的模糊概率评判方法[J]. 岩土力学, 2008, 29(4):876-880. LIU Zhangjun, YE Liaoyuan, PENG Gang. Fuzzy probability comprehensive evaluation method for sand liquefaction during earthquake[J]. Rock and Soil Mechanics, 2008, 29(4):876-880. (in Chinese)

相似文献/References:

[1]程旭东,徐剑.立式储油罐地震作用下的抗提离可靠度分析[J].世界地震工程,2010,(01):173.
 CHENG Xudong,XU Jian.Reliability analysis on anti-lift-off effect of vertical storage tanks under strong earthquakes[J].,2010,(04):173.
[2]边金,陶连金,王文沛,等.强震下地铁车站结构动力响应特性[J].世界地震工程,2010,(02):114.
 BIAN Jin,TAO Lianjin,WANG Wenpei,et al.Dynamic response characteristics of underground subway station during the strong earthquake[J].,2010,(04):114.
[3]刘建平,付立武,郝建斌,等.长输油气管道地震监测预警的应用与技术[J].世界地震工程,2010,(02):176.
 LIU Jianping,FU Liwu,HAO Jianbin,et al.Application and technology of earthquake monitoring and early-warning for long-distance oil and gas pipeline[J].,2010,(04):176.
[4]李广信.土工合成材料构造物的抗震性能[J].世界地震工程,2010,(04):031.
 LI Guangxin.Behavior of earth structure with geosynthetics in earthquake[J].,2010,(04):031.
[5]王建华,周扬锐.饱和弱化与液化土层的水平极限抗力[J].世界地震工程,2010,(04):037.
 WANG Jianhua,ZHOU Yangrui.Ultimate lateral resistances of saturated degraded and liquefied strata[J].,2010,(04):037.
[6]庄海洋,陈国兴.砂土液化大变形本构模型及在ABAQUS软件上的实现[J].世界地震工程,2011,(02):045.
 ZHUANG Haiyang,CHEN Guoxing.Constitutive model for large liquefaction deformation of sand and its implementation in ABAQUS software[J].,2011,(04):045.
[7]董春敏,孟海平,孙佳佳.矩形截面框架柱双向受剪承载力简化算法[J].世界地震工程,2011,(02):179.
 DONG Chunmin,MENG Haiping,SUN Jiajia.Simplified method for bilateral shear strength of rectangular frame columns[J].,2011,(04):179.
[8]丁南宏,林丽霞,钱永久.结构参数对双链式悬索桥地震响应的影响[J].世界地震工程,2011,(04):156.
 DING Nanhong,LIN Lixia,QIAN Yongjiu.Effect of structural parameters on seismic response of a double cables suspension bridge[J].,2011,(04):156.
[9]董春敏,周淼.斜向往复水平荷载作用下矩形截面框架柱抗震性能[J].世界地震工程,2012,(03):065.
 DONG Chunmin,ZHOU Miao.Aseismatic performance of rectangular frame column subjected to oblique reciprocating horizontal load[J].,2012,(04):065.
[10]林均岐,钟江荣.地震灾害产业关联损失评估[J].世界地震工程,2007,(02):037.
 LIN Junqi,ZHONG Jiangrong.Assessment of earthquake induced production sections-related loss[J].,2007,(04):037.

备注/Memo

备注/Memo:
收稿日期:2016-10-20;改回日期:2016-11-19。
基金项目:国家自然科学基金项目(51208108);中央高校基本科研业务费专项资金创新团队项目(ZY20160101)
作者简介:王亮(1991-),男,硕士研究生,主要从事岩土工程抗震研究.E-mail:uniquewl@163.com
通讯作者:薄景山(1958-),男,研究员,博士生导师,主要从事岩土地震工程研究.E-mail:bojingshan@163.com
更新日期/Last Update: 1900-01-01