[1]韩建平,付志君.钢筋混凝土框架结构震后功能恢复能力的量化研究[J].世界地震工程,2018,34(01):017-23.
 HAN Jianping,FU Zhijun.Quantitative investigation on post-earthquake resilience capacity of reinforced concrete frame structure[J].,2018,34(01):017-23.
点击复制

钢筋混凝土框架结构震后功能恢复能力的量化研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
34
期数:
2018年01期
页码:
017-23
栏目:
出版日期:
2018-09-29

文章信息/Info

Title:
Quantitative investigation on post-earthquake resilience capacity of reinforced concrete frame structure
作者:
韩建平12 付志君12
1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;
2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心, 甘肃 兰州 730050
Author(s):
HAN Jianping12 FU Zhijun12
1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China;
2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
震后功能恢复能力RC框架地震易损性地震损失恢复模型
Keywords:
post-earthquake resilience capacityRC frameseismic fragilityearthquake lossrecovery model
分类号:
TU352.1
摘要:
震后功能恢复能力是指建筑物、社区或城市等遭受地震影响后实现功能恢复的能力。以一钢筋混凝土框架结构为对象,基于OpenSees有限元分析平台,对其进行增量动力分析,得到其对应于不同损伤状态的地震易损性曲线。进而基于单体建筑损失评估理论,评估该结构在不同强度水准地震动作用下的地震损失,包括直接经济损失和间接经济损失等。在此基础上,分别利用直线型、指数型以及三角函数型功能恢复模型,在不同强度水准地震动作用下,分别计算该结构的震后功能恢复能力。结果表明:随着地震动强度的增加,基于3种恢复模型计算得到的震后功能恢复能力都在下降,而且直线型和三角函数型恢复模型得到的恢复能力均比指数型的下降更快;在同一强度水准地震动作用下,基于指数型恢复模型计算得到的震后功能恢复能力均高于直线型和三角函数型恢复模型,即使在较强水准地震动作用下,根据指数型恢复模型得到的恢复能力依然较大。而在各个强度水准地震动作用下,基于直线型和三角函数型恢复模型得到的震后功能恢复能力非常接近。
Abstract:
Post-earthquake resilience capacity is the ability of buildings, communities or cities to recover from the loss of their functionality during the damaging earthquake. In this paper, one of reinforced concrete (RC) frame structure was chosen as case study and OpenSees software was taken as analytical tool to conduct incremental dynamic analysis (IDA) on the structure. The seismic fragility curves corresponding to different damage states were obtained. Furthermore, the seismic losses, including direct economy loss and indirect economy loss of the structure were evaluated under different ground motion intensity level based on the loss assessment procedure of single building. Finally, the post-earthquake resilience capacities of the RC frame were calculated based on linear, exponential and trigonometric function recovery models under different ground motion intensity levels. The results show that the post-earthquake resilience calculated based on the three recovery models decreases with the increase of ground motion intensity level. The resilience capacities based on linear and trigonometric recovery models drop faster than that based on exponential model. The resilience capacity based on exponential recovery model is higher than those based on linear and trigonometric models under the same intensity level. The high resilience capacity is achieved based on exponential recovery model even under high intensity level. Otherwise, linear and trigonometric recovery models result in approximately the same post-earthquake resilience capacity of the structure.

参考文献/References:

[1] GVNAY S, MOSALAM K M. Peer performance-based earthquake engineering methodology, revisited[J]. Journal of Earthquake Engineering, 2013, 17(17):829-858.
[2] FEMA P-58-1. Seismic performance assessment of buildings Volume 1-Methodology[R]. Washington D C:Federal Emergency Management Agency, 2012.
[3] KRAWINKLER H, DWIWRLEIN G G. Challenges towards achieving earthquake resilience through performance-based earthquake engineering[A]. FISCHINGER M. Performance-Based Seismic Engineering:Vision for an Earthquake Resilient Society[M]. Springer Netherlands, 2014:3-23.
[4] BEUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4):733-752.
[5] BRUNEAU M, REINHORN A. Exploring the concept of seismic resilience for acute care facilities[J]. Earthquake Spectra, 2007, 23(1):41-62.
[6] MILES S B, CHANG S E. Modeling community recovery from earthquakes[J]. Earthquake Spectra, 2006, 22(2):439-458.
[7] DAVIDSON R A, C,agnan Z. Restoration modeling of lifeline systems[A]. MCEER-04-SP01, Research progress and accomplishments 2003-2004[R]. Buffalo:Multidisciplinary Center for Earthquake Engineering Research, 2004:55-64.
[8] CHANG S E, SHINOZUKA M. Measuring improvements in the disaster resilience of communities[J]. Earthquake Spectra, 2004, 20(3):739-755.
[9] CIMELLARO G P. Improving seismic resilience of structural systems through integrated design of smart structures[D]. Buffalo:State University of New York at Buffalo, 2007.
[10] UNISDR. Living with risk:A global review of disaster reduction initiatives[EB/OL]. http//www.unisdr.org/we/inform/publications/657. New York and Geneva:United Nations, 2004.
[11] CIMELLARO G P, REINHORN A M, BRUNEAU M. Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32(11):3639-3649.
[12] CIMELLARO G P, REINHORN A M, BRUNEAU M. Seismic resilience of a hospital system[J]. Structure & Infrastructure Engineering, 2010, 6(1-2):127-144.
[13] WERNER S D, TAYLOR C E, CHO S, et al. REDARS 2 Methodology and software for seismic risk analysis of highway systems[R]. Buffalo:Multidisciplinary Center for Earthquake Engineering Research, 2006.
[14] KAFALI C, GRIGORIU M. Rehabilitation decision analysis[A]. AUGUSTI G, SCHULLER G I, CIAMPOL M. Safety and Reliability of Engineering Systems and Structures——Proceedings of the Ninth International Conference on Structural Safety and Reliability ICOSSAR’05[C]. Rotterdam:Millpress, 2006.
[15] 韩建平, 黄林杰. 新旧规范设计RC框架地震易损性分析及抗整体性倒塌能力评估[J]. 建筑结构学报, 2015, 36(S2):92-99. HAN Jianping, HUANG Linjie. Seismic fragility analysis and global collapse resistance capacity investigation of infilled RC frame by new and old seismic design codes[J]. Journal of Building Structure, 2015, 36(S2):92-99. (in Chinese)
[16] Applied Technology Council. FEMA P695, Quantification of building seismic performance factors[R]. Redwood City, California:2009.
[17] 韩建平, 褚小嘉. 基于易损性分析的RC框架-填充墙结构地震直接经济损失计算[J]. 世界地震工程, 2016, 32(3):13-20. HAN Jianping, CHU Xiaojia. Seismic direct economic loss analysis of infilled RC frame structure based on fragility analysis[J]. World Earthquake Engineering, 2016, 32(3):13-20. (in Chinese)
[18] Mitrani-Reiser J. An ounce of prevention:probabilistic loss estimation for performance-based earthquake engineering[D]. Pasadena:California Institute of Technology, 2007.

相似文献/References:

[1]唐伟,胡夏闽,王家骥,等.节能墙板对RC框架抗震性能影响的试验研究[J].世界地震工程,2017,33(01):137.
 TANG Wei,HU Xiamin,WANG Jiaji,et al.Experiment study on influence of energy saving wall board on seismic behavior of RC frames[J].,2017,33(01):137.

备注/Memo

备注/Memo:
收稿日期:2017-02-15;改回日期:2017-05-03。
基金项目:国家自然科学基金项目(51578273);国家自然科学基金项目(51268036);教育部长江学者和创新团队发展计划(IRT13068)
作者简介:韩建平(1970-),男,教授,博士,博士生导师,主要从事结构抗震、减震控制及损伤识别研究.E-mail:jphan@lut.cn
更新日期/Last Update: 1900-01-01