[1]毛晨曦,李诗尧,张亮泉.落地通信基站机房地震易损性及震后功能失效概率评估[J].世界地震工程,2018,34(02):055-64.
 MAO Chenxi,LI Shiyao,ZHANG Liangquan.Seismic fragility and functional failure probability assessment of machine room of typical base transceiver stations that located on the ground[J].,2018,34(02):055-64.
点击复制

落地通信基站机房地震易损性及震后功能失效概率评估
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
34
期数:
2018年02期
页码:
055-64
栏目:
出版日期:
2018-10-10

文章信息/Info

Title:
Seismic fragility and functional failure probability assessment of machine room of typical base transceiver stations that located on the ground
作者:
毛晨曦1 李诗尧1 张亮泉2
1. 中国地震局工程力学研究所 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 东北林业大学 土木工程学院, 黑龙江 哈尔滨 150080
Author(s):
MAO Chenxi1 LI Shiyao1 ZHANG Liangquan2
1. Key Laboratory of Earthquake Engineering and Engineering Vibration of CEA, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China;
2. School of Civil Engineering, Northeast Forestry University, Harbin 150080, China
关键词:
通信基站机房静力推覆分析增量动力分析地震易损性震后功能状态评估
Keywords:
machine room of BTSpushover analysisincremental dynamic analysisseismic vulnerabilityfunctional status assessment after earthquake
分类号:
P315.9
摘要:
机房是移动通信基站的重要组成部分,其地震易损性将决定基站在震后的功能状态,即基站所辖范围内的移动通信服务在震后是否可以正常使用。在对我国北方某市典型落地通信基站机房进行实地考察的基础上,确定了影响机房地震后使用功能的重要设施(即基站板房、内部走线架、通信机柜和蓄电池组);随后采用有限元软件ABAQUS分别建立了这些设施的数值模型,通过Pushover分析确定了每种设施的损伤模式、损伤水平评价指标及其数值;通过IDA分析得到了每种设施的抗震性能,并通过对IDA分析结果的统计得到了这些重要设施的地震易损性曲线;最后,给出了基于故障树模型的典型通信基站机房震后功能评估的方法。该工作将作为基本环节用于城市及地区移动通信系统的地震后功能状态评估与预测。
Abstract:
Machine rooms are important part in Base Transceiver Stations (BTS) of mobile communication system. Their seismic fragility will determine the functional status of BTS, that is, whether the mobile communication service within the scope of the BTS can be used normally after an earthquake. Based on the field-study on a typical BTS in a northern city of China, the important facilities (including steel panel room, cable tray, equipment cabinet and storage battery) affecting the functional status of BTS after earthquakes were determined.Then, the numerical models of these facilities weree stablished by using the finite element software ABAQUS. The damage modes, damage indexes and their values of each facility were determined by Pushover analysis.The seismic performance of each facility was obtained by IDA analysis, and the seismic fragility curves of these important facilities were obtained by statistical analysis of IDA results.Finally, based on fault tree model, the method evaluating functional status of BTS after earthquakes was given. The work of this paper will be used as the basic work for the evaluation and prediction of the functional status of mobile communication system of an area after earthquakes.

参考文献/References:

[1] 丁奇.大话无线通信[M].北京:人民邮电出版社,2010:2-25. DING Qi.Wireless Communication[M].Beijing:Posts and Telecom Press,2010:2-25.
[2] 毛晨曦, 李诗尧, 张亮泉. 典型通信铁塔抗震性能及地震易损性[J]. 世界地震工程, 2018,34(1):63-71. MAO Chenxi, LI Shiyao, ZHANG Liangquan. Seismic capacity and vulnerability of typical communication towers[J]. World Earthquake Engineering, 2018,34(1):63-71.
[3] 邹杰. 彩钢夹芯板的保温隔热及力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2007. ZOU Jie. Research on the thermal and mechanical properties of steel sandwich panel[D]. Harbin:Harbin Institute of Technology, 2007.
[4] 尹彪. 彩钢夹芯板二层承重结构的力学性能试验和设计建议. 上海:同济大学, 2002. YIN Biao. Mechanical performance test and design suggestion of two story load-bearing structure made by color steel sandwich panel[D]. Shanghai:Tongji University, 2002.
[5] 杨飞兵. 电子设备动力学分析及其振动控制[D]. 西安:西安电子科技大学, 2011. YANG Feibing. Dynamic analysis of electronic equipment and vibration control[D]. Xian:Xidian University,2011.
[6] 刘诗语. 通信系统地震破坏易损性分析[D]. 哈尔滨:东北林业大学, 2014. LIU Shiyu. Seismic Vulnerability analysis of communication system under earthquake[D]. Harbin:Northeast Forestry University, 2014.
[7] TIAN Y, FILIATRAULT A, MOSQUEDA G. Seismic response of pressurized fire sprinkler piping systems ii:numerical study[J]. Journal of Earthquake Engineering, 2015, 19(4):674-699.
[8] PARK J, TOWASHIRAPORN P, CRAIG J I, et al. Seismic fragility analysis of low-rise unreinforced masonry structures[J]. Engineering Structures, 2009, 31(1):125-137.
[9] 贾新章,高雪莉,宋军建.对数正态概率纸的自动生成和分布参数的自动提取[J].电子产品可靠性与环境试验,2004,1(2):24-27. JIA Xinzhang,GAO Xueli,SONG Junjian.Theautomatic generation of lognormal probability paper and the automatic extraction of distribution parameters[J].Electronic Product Reliability and Environment Test,2004,1(2):24-27.
[10] 聂晨华, 高西, 董荣胜. 基于故障树的无线传感器网络可靠度符号计算[J].计算机工程与设计, 2015, 36(6):1425-1451. NIE Chenhua, GAO Xi, DONG Rongsheng. Symbolic computation method of wireless sensor network reliability based on fault tree[J]. Computer Engineering and Design, 2015, 36(6):1425-1451.
[11] 熊小萍, 谭建成, 林湘宁. 基于动态故障树的变电站通信系统可靠性分析[J].中国电机工程学报, 2012, 32(34):135-141. XIONG Xiaoping, TAN Jiancheng, LIN Xiangning. Reliability analysis of communication systems in substations based on the dynamic fault tree[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(34):135-141.

相似文献/References:

[1]毛晨曦,李诗尧,张亮泉.典型通信铁塔抗震性能及地震易损性[J].世界地震工程,2018,34(01):063.
 MAO Chenxi,LI Shiyao,ZHANG Liangquan.Seismic capacity and vulnerability of typical communication towers[J].,2018,34(02):063.

备注/Memo

备注/Memo:
收稿日期:2016-11-16;改回日期:2017-01-15。
基金项目:国家科技支撑计划课题"生命线网络系统地震破坏及功能失效分析"(2015BAK17B05),大中城市地震灾害情景构建重点专项资助项目(2016QJGJ11),中国地震局创新团队发展计划(中国大陆地区地震灾害模拟与评估)
作者简介:毛晨曦(1974-),女,研究员,主要从事结构工程抗震和通信系统地震灾害评估等方面的研究.E-mail:maochenxi@iem.ac.cn
更新日期/Last Update: 1900-01-01