[1]孙纬宇,严松宏,汪精河,等.进洞高程对黄土隧道洞口衬砌和仰坡动力响应的影响[J].世界地震工程,2019,35(02):024-30.
 SUN Weiyu,YAN Songhong,WANG Jinghe,et al.Influence of portal elevation on lining and slope dynamic response of loess tunnel portal section[J].,2019,35(02):024-30.
点击复制

进洞高程对黄土隧道洞口衬砌和仰坡动力响应的影响
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
35
期数:
2019年02期
页码:
024-30
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Influence of portal elevation on lining and slope dynamic response of loess tunnel portal section
作者:
孙纬宇12 严松宏13 汪精河12 欧尔峰12 梁庆国12
1. 兰州交通大学 土木工程学院, 甘肃 兰州 730070;
2. 兰州交通大学 甘肃省道路桥梁与地下工程重点实验室, 甘肃 兰州 730070;
3. 甘肃省轨道交通力学应用工程实验室, 甘肃 兰州 730070
Author(s):
SUN Weiyu12 YAN Songhong13 WANG Jinghe12 OU Erfeng12 LIANG Qingguo12
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Key Laboratory of Road & Bridge and Underground Engineering of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China;
3. Engineering Laboratory of Mechanics Application of Railway Transportation of Gansu Province, Lanzhou 730070, China
关键词:
进洞高程黄土隧道动力响应洞口仰坡坡面稳定性
Keywords:
tunneling altitude on slopeloess tunneldynamic responseentrance slopestability of loess slope
分类号:
U452
摘要:
针对黄土边坡与隧道洞口段衬砌的相互作用问题,运用数值模拟的方法分析了以不同进洞高程进洞时黄土隧道洞口段衬砌的动力响应特征和洞口仰坡的动力稳定性。结果表明:进洞高程越大,洞口段隧道衬砌的位移响应与内力响应越大;随着进洞高程的增大,坡面位移放大系数在减小,不同进洞高程进洞时坡面位移放大系数均呈先增大后减小再增大的变化趋势。在0.2~0.6H时变化最为剧烈,0.4H左右时位移放大系数达到了最大值;不同进洞高程进洞时坡面中心和水平方向距离隧道结构1.5D处的坡面位移放大系数变化趋势基本一致,其大小关系为:纯边坡位移放大系数 < 有隧道结构中面位移放大系数 < 距隧道1.5D位移放大系数;随着进洞高程的增大,剪应变增量和坡面位移均在减小,坡面的稳定性在增强。该研究可为黄土地区隧道进洞高程的选择提供一定的参考。
Abstract:
In view of the interaction between loess slope and tunnel portal lining, the dynamic response characteristics of loess tunnel portal and the dynamic stability of entrance slope at different tunneling altitude on slopes are analyzed by numerical simulation method. The results show that:the higher of the tunneling altitude on slope, the greater of displacement response and internal force response of the tunnel structure; the magnification coefficient of the slope displacement gradually decreases with the increase of the tunneling altitude on slope; the amplification coefficient of the slope displacement are increases first, then decreases, finally increases again at different tunneling altitude on slopes, and the change is most serious at 0.2H~0.6H and reaches the maximum value about 0.4H; there are the same variation trend of the amplification coefficient at the center of the slope and at the distance of 1.5D from the tunnel in the horizontal direction. For the amplification coefficient, it shows that the slope without tunnel is the smallest, the center of the slope is the medium, and distance from the tunnel of 1.5D in the horizontal direction is the largest. The shear strain increment and slope displacement decrease with the increase of tunneling altitude on slope, meanwhile the slope stability is strengthening. The research results can provide some references to the selection of tunneling altitude on slope in loess area.

参考文献/References:

[1] 王兰民, 孙军杰. 黄土高原城镇建设中的地震安全问题[J]. 地震工程与工程振动, 2014(4):115-122. WANG Lanmin, SUN Junjie. Seismic safety issues in the process of urban development in Loess Plateau[J]. Earthquake Engineering and Engineering Dynamics, 2014(4):115-122. (in Chinese)
[2] 喻渝, 马建林, 方钱宝,等. 郑西客专黄土隧道地基湿陷性消除技术试验研究[J]. 高速铁路技术, 2010, 1(1):16-21. YU Yu, MA Jianlin, FANG Qianbao, et al. Experimental research for eliminating subbase collapsibility of loess tunnel for Zheng-Xi passenger dedicated railway[J]. High Speed Railway Technology, 2010, 1(1):16-21. (in Chinese)
[3] 高波, 王峥峥, 袁松,等.汶川地震公路隧道震害启示[J].西南交通大学学报,2009,44(3):336-341. GAO Bo, WANG Zhengzheng, YUAN Song, et al. Lessons learnt from damage of highway tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University, 2009,44(3):336-341. (in Chinese)
[4] 王明年, 林国进, 于娟, 等. 隧道抗震与减震[M].北京:科学出版社,2012. WANG Mingnian, LIN Guojin, YU Juan, et al. Tunnel Seismic and Shock Absorption[M]. Beijing, Science Press, 2012. (in Chinese)
[5] 崔光耀, 刘维东, 倪嵩陟, 等. 汶川地震各地震烈度区公路隧道震害特征研究[J].现代隧道技术学报,2014,51(6):1-5. CUI Guangyao, LIU Weidong, NI Songzhi, et al. Study on different seismic intensities and earthquake damage to highway tunnels in Wenchuan area affected by earthquakes[J]. Modern Tunnelling Technology, 2014, 51(6):1-5.(in Chinese)
[6] 李廷春, 殷允腾. 汶川地震中隧道结构的震害分析[J].工程爆破,2011,17(1):24-27. LI Tingchun, YIN Yunteng. Seismic damage analysis of tunnel structure in Wenchuan earthquake[J]. Engineering Blasting, 2011,17(1):24-27. (in Chinese)
[7] 郑清, 高波, 申玉生. 山岭隧道震害调查及修复技术研究[J].石家庄铁道大学学报(自然科学版), 2010,23(4):46-48. ZHENG Qing, GAO Bo, SHEN Yusheng. Investigation of mountain tunnel earthquake damage and study on remedial measures[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2010,23(4):46-48. (in Chinese)
[8] 耿萍, 曹东杰, 唐金良, 等. 铁路隧道洞口合理抗震设防长度[J].西南交通大学学报, 2012,44(6):943-948. GENG Ping, CAO Dongjie, TANG Jinliang, et al. Rational seismic protective length for portal of railway tunnel[J]. Journal of Southwest Jiaotong University, 2012,44(6):943-948. (in Chinese)
[9] 吴冬, 高波, 申玉生,等. 隧道仰坡地震动力响应特性振动台模型试验研究[J]. 岩土力学, 2014(7):1921-1928. WU Dong, GAO Bo, SHEN Yusheng, et al. Shaking table test study of seismic dynamic response of tunnel entrance slope[J]. Rock and Soil Mechanics, 2014(7):1921-1928. (in Chinese)
[10] 陶连金, 侯森, 赵旭, 等. 不同仰坡度数的山岭隧道洞口段动力响应振动台试验研究[J].岩土力学,2014,35(增1):91-98. TAO Lianjin, HOU Sen, ZHAO Xu, et al. Large-scale shaking table test for dynamic response in portal section of mountain tunnel with different gradients of upward slope[J]. Rock and Soil Mechanics, 2014,35(S1):91-98. (in Chinese)
[11] 王丽丽, 吴志坚, 梁庆国, 等. 仰坡坡度对隧道洞口段动力响应的影响分析[J]. 地震工程学报, 2016, 38(4)::853-858. WANG Lili, WU Zhijian, LIANG Qingguo, et al. Influence of slope gradient on dynamic response in portal section of tunnel[J].China Earthquake Engineering Journal, 2016, 38(4):853-858.(in Chinese)
[12] 孙纬宇. 考虑边坡效应的大断面黄土隧道洞口段动力响应特征研究[D]. 兰州:兰州交通大学, 2016. SUN Weiyu. Study on dynamic response characteristics of portal zone of large-section loess tunnels with considering slope effect[D].Lanzhou:Lanzhou Jiaotong University, 2016.(in chinese)
[13] 张鲁渝, 郑颖人, 赵尚毅, 等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报, 2003, 1:21-26. ZHANG Luyu, ZHENG Yingren, ZHAO Shangyi, et al. The feasibility study of strength-reduction method with FEM[J]. Shui Li Xue Bao, 1:21-26. (in Chinese)
[14] TB 10003-2016铁路隧道设计规范[S]. 北京:中国铁道出版社, 2016. TB 10003-2016 Code for Design on Tunnel of Railway[S]. Beijing, China Railway Press, 2016. (in Chinese)
[15] 言志信, 曹小红, 张刘平,等. 地震作用下黄土边坡动力响应数值分析[J]. 岩土力学, 2011, 32(S2):610-614. YAN Zhixin, CAO Xiaohong, ZHANG Liuping, et al. Numerical analysis of loess slope dynamic response under earthquake[J]. Rock and Soil Mechanics, 2011, 32(S2):610-614. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2018-8-3;改回日期:2018-11-20。
基金项目:国家自然科学基金项目(编号41562013,51268030);兰州交通大学青年科学基金项目(2017020)
作者简介:孙纬宇(1988-),男,博士研究生,主要从事隧道工程抗震的研究.E-mail:448221362@qq.com
通讯作者:严松宏(1966-),男,教授,博士,从事岩土与地下工程方面的教学与研究工作.E-mail:yansonghong@163.com
更新日期/Last Update: 1900-01-01