[1]周利剑,卢召红,郭俊男,等.附加粘滞阻尼器的球形储罐减震性能研究[J].世界地震工程,2019,35(02):057-67.
 ZHOU Lijian,LU Zhaohong,GUO Junnan,et al.Study on shock absorption performance of spherical tank with viscous damper[J].,2019,35(02):057-67.
点击复制

附加粘滞阻尼器的球形储罐减震性能研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
35
期数:
2019年02期
页码:
057-67
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Study on shock absorption performance of spherical tank with viscous damper
作者:
周利剑1 卢召红12 郭俊男1 张宇1
1. 东北石油大学, 黑龙江 大庆 163318;
2. 黑龙江省防灾减灾工程与防护工程重点实验室, 黑龙江 大庆 163318
Author(s):
ZHOU Lijian1 LU Zhaohong12 GUO Junnan1 ZHANG Yu1
1. Northeast Petroleum University, Daqing 163318, China;
2. Key Laboratory of Disaster Prevention, Mitigation and Protection Engineering, Daqing 163318, China
关键词:
球形储液罐减震粘滞阻尼器抗震性能
Keywords:
spherical tankvibration absorptionviscous damperseismic performance
分类号:
TE8
摘要:
球罐作为石油化工行业的重要存储容器,一旦在服役期间发生破坏,不仅将造成重大经济损失,而且易发生重大人员伤亡事故。用ADINA分析软件建立了球罐的设计模型及简化理论模型,并研究了附加粘滞阻尼器的速度指数与配置方案对球形储液罐减震的影响。利用达朗贝尔原理建立动力方程,采用非线性动力方程计算其基底剪力值,与有限元法计算结果对比分析。研究结果表明:当速度指数为0.3的时候,在地震动作用下其结构柱顶的加速度变大;当速度指数大于等于0.7时,滞回曲线明显变扁,耗能减震的效率降低到15%以下。相对于全布置方案,按方案7在布置粘滞性阻尼器,球罐基底剪力、柱顶速度、柱顶位移、拉杆应力及拉杆拉力的控制上,效果能达到全布置方案的60%以上,在波高的控制上能达到70%以上。有限元验算与计算结果较为吻合,可为后续的研究应用提供参考依据。粘滞阻尼器有助于球罐结构减震,但粘滞阻尼器的参数和配置方案应综合考虑工程的实际情况而定。
Abstract:
As an important storage container in the petrochemical industry, spherical tank will not only cause great economic loss, but also easily cause great casualties once it is damaged in service. In this paper, the design model and simplified theoretical model of the spherical tank were established by the ADINA analysis software, and the influence of velocity index and configuration scheme of viscous damper on vibration absorption of spherical tank was studied. In addition,by using the d’Alembert principle,the dynamic equation was established.By using the nonlinear dynamic equation,the based shear force was calculatedand the results were compared with that obtained by finite element method. It is shown that when the velocity index was 0.3, the acceleration of the top of the structural column increases under the earthquake action. When the velocity index was greater than or equal to 0.7, the hysteretic curve becomes obvious flat and the energy dissipation and vibration absorption efficiency decreases to below 15%. Compared with the full layout scheme, if the viscous damper was arranged according to the scheme 7, the effect of the base shear force of the spherical tank,the speed of the column top,the displacement of the column top,the stress of the tie rod and the tensile force of the drawbar can reach more than 60% of the full layout scheme,and the control of wave height can reach more than 70%.The finite element calculation verified the result by the theoretical model, which can provide reference for the future study. Viscous dampers are helpful to the vibration absorption of the spherical tanks, but the parameters and layout scheme of the viscous dampers should be based on the actual engineering conditions.

参考文献/References:

[1] 高云鹏,赵鸣.减震立式液化天然气球罐柱脚用带孔剪切钢板阻尼器性能分析[J].工业建筑,2018,48(1):184-188. GAO Yunpeng, ZHAO Ming. Performance analysis of perforated shear panel vertical dampers for lng tank[J].Industrial Construction. 2018, 48(1):184-188.(in Chinese)
[2] 吴新伟.震后大型球罐-支撑体系的相关力学问题研究[D].大连:大连理工大学, 2015. WU Xinwei. Research on the relevant mechanical problems of a large spherical tank and it is support system after an earthquake[D]. Dalian China:Dalian University of Technology, 2015.(in Chinese)
[3] PANIGTAHY P K, SAHA U K, MAITY D. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks[J]. Ocean Engineering, 2009, 36(3-4):213-224.
[4] 戴鸿哲, 王伟, 肖志刚. 球形储液罐液-固耦联地震反应及减振方法[J]. 哈尔滨工业大学学报, 2010, 42(4):515-520. DAI Hongzhe, WANG Wei, XIAO Zhigang. Fluid-structure interactive seismic response and vibration dissipation method of spherical liquid storage tank[J].Journal of Harbin Institute of Technology, 2010, 42(4):515-520.(in Chinese)
[5] 李永泰, 顾永干, 郭春光, 等. 1000 m3液氨球罐地震失效分析[J]. 压力容器, 2014(1):56-61. LI Yongtai, GU Yonggan, GUO Chunguang,et al. Seismic failure analysis of 1000 m3 liquid ammonia spherical tank[J]. Pressure Vessel Technology,2014(1):56-61.(in Chinese)
[6] 郭春光, 李永泰, 黄金国, 等. 球罐整体结构自振周期计算及地震响应分析[J].压力容器, 2012, 29(7):28-32. GUO Chunguang, LI Yongtai, HUANG Jinguo, et al. Natural period of vibration calculation of spherical tank as a whole and response analysis of seismic force[J]. Pressure Vessel Technology,2012, 29(7):28-32.(in Chinese)
[7] 宫成欣. 球形储罐地震反应及结构控制研究[D]. 大庆:大庆石油学院,2007. GONG Chengxin. Research on the earthquake response and structure control of the spherical storage tanks[D]. Daqing:Daqing Petroleum Institute,2007.(in Chinese)
[8] RAMANEYULU K, HUSAIN A, SEHGAL D K, et al.Finite element analysis and reliability assessment of spherical LPG storage tank[J].IE (I) Journal-MC, 2003, 84(3):98-103.
[9] LAZAROS A Patkas, MANOLIS A Platyrrachos.Sloshing effects on the seismic design of horizontal-cylindrical and spherical industrial vessels[J].Journal of Pressure Vessel Technology, 2006, 128:328-340.
[10] BERGAMO G,BERGAMO MG Castellano, GATTI F, et al. Seismic protection at petrochemical facilities:main results from indepth project[J]. World Conference on Seismic Isolation, 2007.
[11] POGGIANTI A, MARTI J, GATTI F, et al. Seismic risk reduction at petrochemical and lng facilities:main results from indepth project[J]. World Conference on Seismic Isolation, 2008.
[12] CURADELLI O.Seismic reliability of spherical containers retrofitted by means of energy dissipation devices[J]. Engineering Structures, 2011, 33(9):2662-2667.
[13] OLUDELE Adeyefa, OLULEKE Oluwole.Finite element modeling of seismic response of field fabricated liquefied natural gas (LNG)[J].Engineering, 2013, 5(6):543-550.
[14] 吴新伟. 震后大型球罐-支撑体系的相关力学问题研究[D].大连理工大学,2015. WU Xinwei. Research on the relevant mechanical problems of a large spherical tank and it is support system after an earthquake[D].Dalian University of Technology,2015.(in Chinese)
[15] ALESSANDRA Fiore, CRISTOFORO Demartino, RITA Greco, et al. Seismic performance of spherical liquid storage tanks:a case study[J]. International Journal of Advanced Structural Engineering, 2018, 10(2):121-130.
[16] 吕远,孙建刚,孙宗光,等.球形储罐罐底附加黏弹性阻尼器减震研究[J].振动工程学报,2018,31(5):789-798. LV Yuan, SUN Jiangang, SUN Zongguang, et al. Research on the vibration absorption of viscoelastic dampers on the bottom of a spherical tank[J]. Journal of Vibration Engineering,2018,31(5):789-798. (in Chinese)
[17] 翁大根, 张超, 吕西林, 等. 附加黏滞阻尼器减震结构实用设计方法研究[J]. 振动与冲击,2012,31(21):80-88. WENG Dageng, ZHANG Chao, LV Xilin, et al. Practical design procedure for a energy-dissipated structure with viscous dampers[J], Journal of Vibration Engineering,2012,31(21):80-88.(in Chinese)
[18] 周云. 粘滞阻尼器减震结构设计理论及应用[M]. 武汉:武汉理工大学出版社, 2006. ZHOU Yun. Design Theory and Application of Viscous Damper for Shock Absorption Structures[M]. Wuhan:Wuhan University of Technology Press,2006. (in Chinese)
[19] 焦常科. 含非线性粘滞阻尼器结构的动力分析[D]. 南京:南京理工大学, 2006. JIAO Changke. The dynamic analysis of structures with nonlinear viscous dampers[D].Nanjing:Nanjing University of Science & Technology,2006.(in Chinese)

相似文献/References:

[1]孙黄胜,陈士海,施卫星.黏滞阻尼器连接相邻结构减震优化分析[J].世界地震工程,2010,(01):207.
 SUN Huangsheng,CHEN Shihai,SHI Weixing.Optimal design of viscous dampers connecting adjacent structures[J].,2010,(02):207.
[2]王立军,毛晨曦,董金芝.安装形状记忆合金阻尼器的剪力墙结构抗震性能分析[J].世界地震工程,2011,(03):101.
 WANG Lijun,MAO Chenxi,DONG Jinzhi.Seismic performance of shear wall structure with shape memory alloy dampers in coupling beams[J].,2011,(02):101.
[3]高剑平,李建,刘礼君,等.基于能量的多层框架结构“加层减震”体系参数优化研究[J].世界地震工程,2011,(04):013.
 GAO Jianping,LI Jian,LIU Lijun,et al.Energy-based parameters optimization of adding storey-earthquake reduction system of multi-storey frame structure[J].,2011,(02):013.
[4]张文元,李姝颖,李东伟.菱形开洞软钢阻尼器及其在结构减震中的模拟分析[J].世界地震工程,2007,(01):151.
 ZHANG Wen-yuan,LI shu-ying,LI Dong-wei.Simulation analysis on hysteretic behavior and vibration suppression of the mild steel damper with the diamond-shaped opening and added damping and stiffness[J].,2007,(02):151.
[5]陈兴冲,商耀兆,张永亮,等.高墩大跨度铁路简支钢桁梁桥的减震性能分析[J].世界地震工程,2008,(01):006.
 CHEN Xing-chong,SHANG Yao-zhao,ZHANG Yong-liang,et al.Analysis of seismic reduction performance on the high pier and long span railway simply-supported steel truss girders[J].,2008,(02):006.
[6]戚永乐,彭刚,王乾峰,等.基于正交设计的粘弹性阻尼器参数优化[J].世界地震工程,2008,(2):122.
 QI Yongle,PENG Gang,WANG Qianfeng,et al.Parametric optimization of viscoelastic dampers based on orthogonal design[J].,2008,(02):122.
[7]刘礼君,高剑平.多层框架结构利用铅芯叠层橡胶支座加层减震分析[J].世界地震工程,2009,(01):097.
 LIU Lijun,GAO Jianping.Seismic analysis of a multi-storey RC frame with adding-storey and lead laminated rubber bearings[J].,2009,(02):097.
[8]韩建平,李慧,杜永峰.装设粘弹性阻尼器钢筋混凝土结构抗震实用分析[J].世界地震工程,2005,(01):117.
 HAN Jian-ping,LI Hui,DU Yong-feng.Practical seismic analysis of reinforced concrete structures with viscoelastic dampers[J].,2005,(02):117.
[9]张璨.多维地震激励下某建筑结构隔震控制参数分析[J].世界地震工程,2014,(02):179.
 ZHANG Can.Analysis of vibration isolation controlling parameters of a structure under multi-dimensional seismic excitations[J].,2014,(02):179.
[10]杨德健,耿辰,宋佳楠.基于多点激励下黏滞阻尼器在斜拉桥中的减震效果分析[J].世界地震工程,2015,(02):034.
 YANG Dejian,GENG Chen,SONG Jianan.Multipoint excitation-based vibration reduction effect analysis of viscous damper in cable-stayed bridge[J].,2015,(02):034.

备注/Memo

备注/Memo:
收稿日期:2018-10-9;改回日期:2018-12-6。
基金项目:国家自然科学基金资助项目(项目编号:51578120);国家自然科学青年基金资助项目(11402051)
作者简介:周利剑,男,博士,副教授,主要从事油气田防灾减灾及防护工程方面的研究.E-mail:zhoulj2001@126.com
通讯作者:卢召红,男,副教授,博士研究生,主要从事管道安全输送及油气田防灾减灾方面的研究.E-mail:luzh2008@126.com
更新日期/Last Update: 1900-01-01