[1]闫磊,李青宁,岳克锋,等.多维多点激励下考虑支座摩擦滑移及结构碰撞的非规则桥梁抗震性能研究[J].世界地震工程,2019,35(02):068-77.
 YAN Lei,LI Qingning,YUE Kefeng,et al.Seismic behavior of irregular bridges under multi-dimensional and multi-point excitation considering friction slip of bearings and structural pounding[J].,2019,35(02):068-77.
点击复制

多维多点激励下考虑支座摩擦滑移及结构碰撞的非规则桥梁抗震性能研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
35
期数:
2019年02期
页码:
068-77
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Seismic behavior of irregular bridges under multi-dimensional and multi-point excitation considering friction slip of bearings and structural pounding
作者:
闫磊1 李青宁2 岳克锋1 李鲁平1 付亚男1 蓝仕成1 喻国根1
1. 重庆三峡学院 土木工程学院, 重庆 万州 404100;
2. 西安建筑科技大学 土木工程学院, 陕西 西安 710055
Author(s):
YAN Lei1 LI Qingning2 YUE Kefeng1 LI Luping1 FU Yanan1 LAN Shicheng1 YU Guogen1
1. School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
2. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
关键词:
多维多点激励非规则桥梁摩擦滑移结构碰撞抗震性能
Keywords:
multi-dimensional and multi-point excitationirregular bridgefriction slidingstructural poundingseismic behavior
分类号:
U442.55
摘要:
以一座典型山区非规则梁桥为研究对象,建立了该桥梁多维多点激励下的多自由度动力计算模型,研究了该桥梁在多维多点激励下考虑支座摩擦滑移及结构碰撞等非线性因素时的抗震性能。研究结果表明:相比一维地震输入,多维地震可使结构的动力响应增加,桥墩底部弯矩需求增大;相比一致激励,多点激励可使得支座的位移需求增大,且地震波最后到达的桥墩上方支座位移最大;同时考虑多点激励和碰撞效应可使桥墩的弯矩需求增加;水平地震作用下,矮墩上部的支座容易滑动,且双向地震较单向地震更明显,三向地震输入较双向有所增强。因此,对山区非规则梁桥进行抗震设计时应有针对性地进行多维多点地震输入计算,找出结构的最大地震需求,以期指导设计。
Abstract:
The seismic performance of a typical irregular beam bridge in mountainous areas was studied in this paper. the multiple degree of freedom dynamic calculation model of the bridge under multi-dimensional and multi-point excitation was established, and the seismic performance of the bridge under multi-dimensional and multi-point excitation considering the non-linear factors such as bearing friction, slip and structural collision was studied. The results show that when compares with the one-dimensional seismic excitation, the multi-dimensional seismic excitation can increase the dynamic response of structures and increase the demand for bending moment at the bottom of piers. Compared with the uniform excitation, the time-delay effect of seismic wave can increase the displacement demand of the rubber bearings, and the displacement of the rubber bearings above the pier where the seismic wave finally arrives is the largest. Considering the time-delay effect of seismic wave and the pounding effect, the demand for bending moment of pier increases. The bearing on the short pier is easy to slip under the excitation of one-directional horizontal earthquake input, the two-directional horizontal earthquake input is more obvious than that of the one-directional earthquake, and the three-directional earthquake input is stronger than that of the two-directional earthquake. Therefore, the seismic design of irregular beam bridges in mountainous areas should be carried out with multi-dimensional and multi-point seismic input in order to find out the maximum seismic demand of the structure for rational design.

参考文献/References:

[1] 庄卫林, 陈乐生. 汶川地震公路震害分析:桥梁与隧道[M]. 人民交通出版社, 2013. ZHUANG Weilin, CHEN Lesheng. Seismic Damage Analysis of Highway in Wenchuan Earthquake:Bridges and Tunnels[M].2013.(in Chinese)
[2] 王浩, 王春峰, 李爱群,等. 高烈度区新型减隔震连续梁桥的抗震性能[J]. 东南大学学报(自然科学版), 2014, 44(4):793-798. WANG Hao, WANG Chunfeng, Li Aiqun, et al. Seismic performance of a new type of seismic isolation continuous girder bridge in high intensity region[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(4):793-798.(in Chinese)
[3] 汤虎,李建中. 板式橡胶支座桥梁地震位移控制方法[J]. 中国公路学报,2013,26(3):110-116. TANG Hu, LI Jianzhong. Seismic displacement control method for slab rubber bearing bridges[J]. China Journal of Highway and Transport, 2013, 26(3):110-116.(in Chinese)
[4] 李立峰,吴文朋,黄佳梅,等. 板式橡胶支座地震易损性分析[J]. 湖南大学学报(自然科学版),2011,38(11):1-6. LI Lifeng, WU Wenpeng, HUANG Jiamei, et al. Seismic vulnerability analysis of plate rubber bearing[J]. Journal of Hunan University (Natural Science Edition), 2011, 38(11):1-6.(in Chinese)
[5] 焦驰宇, 龙佩恒,李士锣,等. 地震作用下中小跨度梁桥横向碰撞参数影响分析[J]. 振动与冲击, 2014, 33(8):48-53. JIAO Chiyu, LONG Peihuan, LI Shiluo, et al. Parametric analysis of transverse collision of medium and small-span bridges under earthquake excitaiton[J]. Journal of Vibration & Shock, 2014, 33(8):48-53.(in Chinese)
[6] 李忠献,周莉,岳福青. 地震动空间效应与土-基础相互作用效应对隔震桥梁临界碰撞间隙的影响[J]. 土木工程学报,2010, 43(7):85-90. LI Zhongxian, ZHOU Li, YUE Fuqing. Effects of spatial variation of ground motion and soil-foundation interaction on critical pounding gap length of seismic isolated bridges[J]. China Civil Engineering Journal, 2010, 43(7):85-90.(in Chinese)
[7] 范立础,聂利英,李建中. 地震作用下板式橡胶支座滑动的动力性能分析[J]. 中国公路学报,2003,16(4):31-36. FAN Lichu, NIE Liying, LI Jianzhong. Dynamic performance analysis of plate rubber bearing sliding under earthquake[J]. China Journal of Highway and Transport, 2003, 16(4):31-36.(in Chinese)
[8] 聂利英,李建中,胡世德,等. 地震作用下板式橡胶支座滑动引起的城市立交中的动力耦合作用[J]. 工程力学,2006,23(11):14-20. NIE Liying, LI Jianzhong, HU Shide, et al. Dynamic coupling effect in urban interchanges caused by sliding of plate rubber bearings under earthquake action[J].Engineering Mechanics, 2006, 23(11):14-20.(in Chinese)
[9] 王克海,孙永红,韦韩,等. 汶川地震后对我国结构工程抗震的几点思考[J]. 公路交通科技,2008,11:54-59. WANG Kehai, SUN Yonghong, WEI Han, et al. Some reflections on earthquake resistance of structural engineering in China after Wenchuan earthquake[J].Highway Transportation Science and Technology, 2008, 11:54-59.(in Chinese)
[10] 王克海,韦韩,李茜,等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报,2012,45(9):115-121. WANG Kehai, WEI Han, LI Qian, et al. Seismic design concept of small and medium span highway bridges[J]. Journal of Civil Engineering, 2012, 45(9):115-121.(in Chinese)
[11] 王克海,李冲,李茜,等. 考虑支座摩擦滑移的中小跨径桥梁抗震设计方法[J]. 工程力学,2014, 31(6):85-92. WANG Kehai, LI Chong, LI Qian, et al. Seismic design method of small and medium span bridge considering bearing friction slipping[J]. Engineering Mechanics, 2014, 31(6):85-92.(in Chinese)
[12] 聂利英,范立础. 地震作用下城市立交抗震挡防撞措施分析[J]. 中国公路学报,2006,19(3):49-53. NIE Liying, FAN Lichu. Analysis of anti-seismic and anti-collision measures of urban interchanges under earthquake action[J]. China Journal of Highway and Transport, 2006, 19(3):49-53.(in Chinese)
[13] LI B, BI K, CHOUW N, et al. Effect of abutment excitation on bridge pounding[J]. Engineering Structures, 2013, 54(3):57-68.
[14] NAVA F, NOBILI C, FERLA G, et al. Experimental investigation of inelastic bridge response under spatially varying excitations with pounding[J]. Engineering Structures, 2014, 79(54):106-116.
[15] WON J H, MHA H S, KIM S H. Effects of the earthquake-induced pounding upon pier motions in the multi-span simply supported steel girder bridge[J]. Engineering Structures, 2015, 93:1-12.

备注/Memo

备注/Memo:
收稿日期:2018-7-4;改回日期:2018-10-8。
基金项目:国家自然科学基金(51508453);重庆市科委研究项目(cstc2018jscx-msyb0517,cstc2018jcyjAX0360);重庆市教委科学技术研究项目(KJQN201801223,KJ1601028);重庆高校创新团队建设计划项目(No.CXTDX201601034);三峡水库岸坡与工程结构灾变防控工程技术研究中心开放基金(SXAPGC18ZDI02、03,SXAPGC18YB02、05);重庆三峡学院三峡库区工
更新日期/Last Update: 1900-01-01