[1]杨紫辉,陈灯红,贺路翔,等.基于IDA的金安桥混凝土重力坝潜在失效模式研究[J].世界地震工程,2019,35(02):078-89.
 YANG Zihui,CHEN Denghong,HE Luxiang,et al.Study on potential failure modes of Jin’anqiao concrete gravity dam based on incremental dynamic analysis[J].,2019,35(02):078-89.
点击复制

基于IDA的金安桥混凝土重力坝潜在失效模式研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
35
期数:
2019年02期
页码:
078-89
栏目:
出版日期:
2019-06-25

文章信息/Info

Title:
Study on potential failure modes of Jin’anqiao concrete gravity dam based on incremental dynamic analysis
作者:
杨紫辉 陈灯红 贺路翔 谢京辉 孙豹
三峡大学 土木与建筑学院, 湖北 宜昌 443002
Author(s):
YANG Zihui CHEN Denghong HE Luxiang XIE Jinghui SUN Bao
College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, China
关键词:
混凝土重力坝增量动力分析抗震性能评估失效模式损伤破坏过程
Keywords:
concrete gravity damincremental dynamic analysisseismic performance evaluationfailure modesdamage process
分类号:
TV312
摘要:
为了研究混凝土重力坝在地震动荷载作用下的潜在失效模式,以金安桥碾压混凝土重力坝5号非溢流坝段为例,运用粘弹性边界法和流固耦合法建立了反映重力坝在地震动作用下动力响应特征的坝体-地基-库水抗震分析模型。基于增量动力分析(IDA)法:绘制了以相对位移转角为x轴(损伤指标,DM)和峰值地面加速度为y轴(强度指标,IM)的IDA曲线簇;分析了金安桥大坝在极端荷载作用下的潜在失效模式和其在不同峰值地面加速度下重力坝的损伤破坏过程。结果表明:金安桥大坝在地震动荷载作用下,可能发生功能失效的地方多出现在坝体折坡处、碾压分区交界处、坝踵与坝基交界处、廊道顶等应力集中处。因此,加强对这些区域的抗震防护有利于提高大坝整体的抗震水平。
Abstract:
In order to study the potential failure modes of concrete gravity dam under seismic load,the No.5 non-overflow dam section of Jin’anqiao roller compacted concrete (RCC) gravity dam is taken as a study example. Based on viscous-spring boundary method and fluid-solid coupling method,a seismic analysis model of dam body-foundation-reservoirwater interaction system is established to reflect the dynamic response characteristics of gravity dam under ground motion. Based on incremental dynamic analysis (IDA) method,the IDA curve with relative displacement rotationas x-axis (damage measure,DM) and peak ground acceleration as y-axis (intensity measure,IM) are obtained. The potential failure modes of Jin’anqiao dam under extreme loads and the process of damage of gravity dam under different peak ground acceleration are studied.It is concluded that under the ground motion load, the places where functional failure may occur are mostly found in the stress concentration of the dam slope, such as the boundary of the rolling section, the junction of the dam and the dam foundation, and the top of the corridor. Therefore, strengthening the seismic protection of these areas is conducive to improve the overall aseismic level of the dam.

参考文献/References:

[1] SUBRATA M, DAMODAR M. Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system[J]. Engineering Structures, 2014,80:289-297.
[2] JIANG S, DU C, HONG Y. Failure analysis of a cracked concrete gravity dam under earthquake[J]. Engineering Failure Analysis, 2013,33:265-280.
[3] 李晓燕, 钟红, 林皋. 地震作用下混凝土重力坝破坏过程与破坏形态数值仿真[J]. 水利学报, 2011,42(10):1209-1217. LI Xiaoyan,ZHONG Hong,LIN Gao. Numerical simulation of damage process and failure modesof concrete gravity dams due to earthquakes[J].Journal of Hydraulic Engineering,2011,42(10):1209-1217.(in Chinese)
[4] 方修君, 金峰, 王进廷. 基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J]. 清华大学学报(自然科学版), 2008,48(12):2065-2069. FANG Xiujun,JIN Feng,WANG Jinting,Seismic fracture simulation of the Koynagravity dam using an extended finiteelement method[J].Tsinghua Scienceand Technology International Journal on Information Science,2008,48(12):2065-2069.(in Chinese)
[5] ALEMBAGHERI M, SEYEDKAZEMI M. Seismic performance sensitivity and uncertainty analysis of gravity dams[J]. Earthquake Engineering & Structural Dynamics, 2015,44(1):41-58.
[6] ALEMBAGHERI M, GHAEMIAN M. Seismic assessment of concrete gravity dams using capacity estimation and damage indexes[J]. Earthquake Engineering and Structural Dynamics, 2013,42(1):123-144.
[7] WANG G, WANG Y, LU W, et al. XFEM based seismic potential failure mode analysis of concrete gravity dam-water-foundation systems through incremental dynamic analysis[J]. Engineering Structures, 2015,98:81-94.
[8] 孔宪京, 庞锐, 邹德高, 等. 基于IDA的高面板堆石坝抗震性能评价[J]. 岩土工程学报, 2018,40(6):978-984. KONG Xianjing,PANG Rui,ZOU Degao,et al. Seismic performance evaluation of high CFRD based on incremental dynamicanalysis[J].Chinese Journal of Geotechnical Engineering,2018,40(6):978-984.(in Chinese)
[9] 陈灯红, 杜成斌, 苑举卫. 基于ABAQUS的粘弹性边界单元及在重力坝抗震分析中的应用[J]. 世界地震工程, 2010,26(3):127-132. CHEN Denghong, DU Chengbin, YUAN Juwei. Viscous-spring boundary elementbased on ABAQUS and application to dynamic analysis of agravity dam[J].World Earthquake Engineering,2010,26(3):127-132.(in Chinese)
[10] VAMVATSIKOS D. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2016,31(3):491-514.
[11] BERTERO V V. Strength and Deformation Capacities of Buildings Under Extreme Environments[M]. Pister K.S. (ed.).Englewood; Prentice-Hall:Structural Engineering and Structural Mechanics, 1977, 211-215.
[12] VAMVATSIKOS D, CORNELL C. Applied incremental dynamic analysis[J]. Earthquake Spectra, 2012,20(2):491-514.
[13] AMIRPOUR A, MIRZABOZORG H. Quantifying the qualitative limit-states using ida approach in concrete arch dams[J]. Arabian Journal for Science and Engineering, 2014,39(11):7729-7740.
[14] 庄茁, 张帆, 岑松, 等. ABAQUS非线性有限元分析与实例[M]. 第一版. 北京东黄城根北街16号:科学出版社, 2005, 244-253. ZHUANG Zhuo,ZHANG Fan,CEN Song,et al. ABAQUS Nonlinear Finite Element Analysis and Examples[M]. First Edition. Beijing:Science Press,2005,244-253.(in Chinese)
[15] 陈灯红, 谢京辉, 杨乃鑫. 基于增量动力分析的混凝土重力坝抗震性能分析[J]. 水利水运工程学报, 2018(5):48-55. CHEN Denghong,XIE Jinghui, YANG Naixin. A study of seismic performance of concrete gravity dam based on incremental dynamic analysis.[J].Hydro-Science and Engineering,2018(5):48-55.(in Chinese)
[16] NB 35047-2015. 水电工程防震抗震设计规范[S]. 中国电力出版社, 2015. NB 35047-2015.Specification for Seismic Design of Hydropower Projects[S].China Electric Power Press,2015.(in Chinese)
[17] 刘章军, 曾波, 周宜红, 等. 地震动过程的概率模型及在重力坝抗震可靠度分析中的应用[J]. 水利学报, 2014,45(9):1066-1074. LIU Zhangjun,ZENG Bo,ZHOU Yihong,et al. Probabilistic model of ground motion processes andseismic dynamic reliability analysis of the gravity dam[J].Journal of Hydraulic Engineering,2014,45(9):1066-1074.(in Chinese)
[18] SOYSAL B F, BINICI B, ARICI Y. Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2016,45(5):719-737.
[19] HARIRI-Ardebili M A, SAOUMA V E, PORTER K A. Quantification of seismic potential failure modes in concrete dams[J]. Earthquake Engineering & Structural Dynamics, 2016,45(6):979-997.
[20] 沈怀至, 金峰, 张楚汉. 基于性能的重力坝-地基系统地震易损性分析[J]. 工程力学, 2008,25(12):86-91. SHEN Huaizhi,JIN Feng,ZHANG Chuhan. Erformance-based seismic fragility analysis of concrete gravity-foundation system[J]. Engineering Mechanics, 2008,25(12):86-91.(in Chinese)

相似文献/References:

[1]王秋维,史庆轩,侯炜,等.型钢混凝土框架结构基于增量动力分析的抗震性能评估[J].世界地震工程,2011,(01):034.
 WANG Qiuwei,SHI Qingxuan,HOU Wei,et al.Seismic performance evaluation of SRC frame structures based on incremental dynamic analysis[J].,2011,(02):034.
[2]侯炜.基于增量动力分析的钢筋混凝土核心筒抗震性能分析与评估[J].世界地震工程,2013,(03):121.
 HOU Wei.Seismic behavior analysis and evaluation of reinforced concrete core walls based on incremental dynamic analysis[J].,2013,(02):121.
[3]陈雯,李昕,周晶.混凝土重力坝整体动力特性研究[J].世界地震工程,2006,(04):063.
 CHEN Wen,LI Xin,ZHOU Jing.Study on the integrated dynamic characteristics of a concrete gravity dam[J].,2006,(02):063.
[4]王海良,张铎,王剑,等.基于IDA的钢管混凝土空间组合桁架连续梁桥抗震易损性分析[J].世界地震工程,2015,(02):076.
 WANG Hailiang,ZHANG Duo,WANG Jian,et al.Evaluation of seismic vulnerability of CFST and space composite trussed continuous bridge using IDA[J].,2015,(02):076.
[5]韩建平,褚小嘉.基于易损性分析的RC框架-填充墙结构地震直接经济损失计算[J].世界地震工程,2016,(03):013.
 HAN Jianping,CHU Xiaojia.Seismic direct economic loss analysis of infilled RC frame structure based on fragility analysis[J].,2016,(02):013.
[6]陈彦江,郝朝伟,闫维明,等.考虑行波效应的高墩刚构桥地震易损性分析[J].世界地震工程,2016,(03):179.
 CHEN Yanjiang,HAO Chaowei,YAN Weiming,et al.Seismic vulnerability analysis for high pier rigid bridge considering traveling wave effect[J].,2016,(02):179.
[7]刘春燕,李慧民,李东波,等.型钢混凝土框架结构地震易损性数值模拟研究[J].世界地震工程,2017,33(04):112.
 LIU Chunyan,LI Huimin,LI Dongbo,et al.Seismic fragility of SRC structures based on OpenSEES and IDA[J].,2017,33(02):112.
[8]毛晨曦,李诗尧,张亮泉.典型通信铁塔抗震性能及地震易损性[J].世界地震工程,2018,34(01):063.
 MAO Chenxi,LI Shiyao,ZHANG Liangquan.Seismic capacity and vulnerability of typical communication towers[J].,2018,34(02):063.
[9]毛晨曦,李诗尧,张亮泉.落地通信基站机房地震易损性及震后功能失效概率评估[J].世界地震工程,2018,34(02):055.
 MAO Chenxi,LI Shiyao,ZHANG Liangquan.Seismic fragility and functional failure probability assessment of machine room of typical base transceiver stations that located on the ground[J].,2018,34(02):055.
[10]张宁,何宝明,米力,等.最不利主余震序列型地震动作用下RC框架结构易损性研究[J].世界地震工程,2018,34(02):181.
 ZHANG Ning,HE Baoming,MI Li,et al.Fragility analysis for RC frame structure under the most unfavorable mainshock-aftershock sequence-type ground motions[J].,2018,34(02):181.

备注/Memo

备注/Memo:
收稿日期:2018-8-31;改回日期:2018-10-15。
基金项目:国家自然科学基金(51309143)、湖北省自然科学基金(2018CFB652)和流域水循环模拟与调控国家重点实验室开放研究基金(IWHR-SKL-201716)资助项目
作者简介:杨紫辉(1992-),男,硕士研究生,主要从事混凝土结构抗震性能研究.E-mail:970956078@qq.com
通讯作者:陈灯红(1983-),男,副教授,主要从事混凝土结构抗震性能研究.E-mail:d.chen@ctgu.ed
更新日期/Last Update: 1900-01-01