[1]李天翔,Yang T. Y.,童根树.双防线可恢复性能斜交网格结构耗能机制和抗震性能研究[J].世界地震工程,2019,35(03):037-44.
 LI Tianxiang,YANG T. Y.,TONG Genshu.Energy dissipation mechanism and seismic performance of earthquake-resilient diagrid structure with dual resisting system[J].,2019,35(03):037-44.
点击复制

双防线可恢复性能斜交网格结构耗能机制和抗震性能研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
35
期数:
2019年03期
页码:
037-44
栏目:
出版日期:
2019-10-20

文章信息/Info

Title:
Energy dissipation mechanism and seismic performance of earthquake-resilient diagrid structure with dual resisting system
作者:
李天翔1 Yang T. Y.2 童根树1
1. 浙江大学 建筑工程学院土木工程系, 杭州 310058;
2. 同济大学 地震工程国际联合研究中心, 上海 200092
Author(s):
LI Tianxiang1 YANG T. Y.2 TONG Genshu1
1. Department of Civil Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. International Joint Research Laboratory of Earthquake Engineering, Tongji University, Shanghai 200092, China
关键词:
斜交网格可恢复性能剪切耗能段塑形设计非线性动力分析
Keywords:
diagrid structureearthquake resiliencyshear linksplastic designnonlinear dynamic analysis
分类号:
TU973;TU352
摘要:
为提高斜交网格结构的抗震性能,提出一种双防线可恢复性能斜交网格结构。双防线可恢复性能斜交网格结构采用剪切耗能段和特定梁端塑形铰进行集中耗能,使主体结构构件保持弹性。剪切耗能段不承受和传递重力荷载,易在震后修复或更换,使建筑可迅速恢复功能。为实现目标耗能机制,对等效能量塑形设计法进行改进以适用于可恢复性能斜交网格结构,并进行结构设计举例。采用OpenSees软件对所设计结构建立详细的有限元计算模型,进行非线性动力时程分析,以验证双防线耗能机制并评估抗震性能。分析结果表明:(1)小震、中震和大震下的结构顶部位移角分别为0.28%、0.8%和1.7%,与性能设计目标基本相同;(2)中震时剪切耗能段屈服,特定梁端未出现塑性铰;(3)大震时,特定梁端出现塑性铰以增加结构耗能能力,剪切耗能段屈服且处于延性范围内。因此新型可恢复性能斜交网格结构具有有效的双防线耗能机制,在中震后可迅速修复,在大震中可保持延性,实现"中震可修,大震不倒"的性能目标。
Abstract:
In order to improve the seismic performance of the diagrid structural system, this paper proposed a new-type earthquake-resilient diagrid structure with a dual resisting system. The new-type diagrid system utilizes designated shear links and moment connections to dissipate earthquake energy and protects the main structure from entering plasticity. The shear links are separated from gravity system so that they can be easily repaired or replaced after earthquake shaking. Therefore, the building would stay functional in an earthquake. To achieve the energy dissipation mechanism, an equivalent-energy-based plastic design method was proposed for the new diagrid system and applied to the structural design of the prototype building. The nonlinear dynamic time history analyses of the prototype building were performed using OpenSees. Results showed that (1) the median roof drift ratios of the designed structure under SLE, DBE and MCE intensity were 0.28%, 0.8% and 1.7%, respectively, almost the same with the design value; (2) the shear links yielded under the DBE intensity while the designated moment connections remained elastic; (3) the moment connections yielded under the MCE intensity to help dissipate energy and the shear links remained ductile. Thus the new earthquake-resilient diagrid structure has a robust energy dissipation mechanism. It can be easily repaired within a short time under the designed earthquake, and can remain ductile under a major earthquake to prevent the structural collapse.

参考文献/References:

[1] MELE E, TORENO M, BRANDONISIO G,et al. Diagrid structures for tall buildings:case studies and design considerations[J]. The Structural Design Of Tall And Special Buildings, 2014, 23(2):124-145.
[2] MONTUORI GM, MELE E, BRANDONISIO G, et al. Design criteria for diagrid tall buildings:stiffness versus strength[J]. The Structural Design of Tall and Special Buildings, 2014, 23(17):1294-1314.
[3] MOON K S, CONNOR J J, FERNANDEZ J E. Diagrid structural systems for tall buildings:characteristics and methodology for preliminary design[J]. The Structural Design of Tall And Special Buildings, 2007, 16(2):205-230.
[4] KIM J, LEE Y H. Seismic performance evaluation of diagrid system buildings[J]. The Structural Design of Tall and Special Buildings, 2012, 21(10):736-749.
[5] YANG T Y, TUNG D P, LI Y. Performance-based plastic design and evaluation of linked column frames[J]. Progress in Steel Building Structures, 2015; 17(1):27-35.
[6] LOPES A P, DUSICKA P, BERMAN J W. Design of the linked column frame structural system[C]. Proceedings ofthe 7th International Conference on Behavior of Steel Structures in Seismic Areas, 2012:311-318.
[7] EROCHKO J, CHRISTOPOULOS C, TREMBLAY R, et al. Shake table testing and numerical simulation of a self-centering energy dissipative braced frame[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(11):1617-1635.
[8] VARGAS R, BRUNEAU M. Experimental response of buildings designed with metallic structural fuses Ⅱ[J]. Journal of Structural Engineering, 2009, 09(135):394-403.
[9] EL-BAHEY S, BRUNEAU M. Structural fuse concept for bridges[C]. Proceedings ofthe 9th U.S. National and 10th Canadian Conference on Earthquake Engineering, 2010.
[10] YANG T Y, TUNG D, LI Y. Equivalent energy design procedure for earthquake resilient fused structures[J]. Earthquake Spectra, 2017. (Accepted).
[11] TUNG D P.Design and validation of innovative earthquake resilient fused structures[D]. Vancouver:the University of British Columbia, 2017.
[12] CHAO S H, GOEL S C. Performance-based plastic design of special truss moment frames[J]. AISC Engineering Journal, 2008, 45(2):127-150.
[13] ATKINSON J C.Seismic design of outrigger systems for tall buildings[D]. Vancouver:the University of British Columbia, 2017.
[14] BODDAPATI V K.Equivalent energy based design procedure for controlled rocking-concentrically braced frames[D]. Vancouver:the University of British Columbia, 2016.
[15] CHAO S H, GOEL S C, LEE S S. A seismic design lateral force distribution based on inelastic state of structures[J]. Earthquake Spectra, 2007, 23(3):547-569.
[16] ASCE/SEI 7-10. Minimum Design Loads for Buildings and Other Structures[M]. Virginia:American Society of Civil Engineers, 2010.
[17] ANSI A. AISC 341-10. Seismic Provisions for Structural Steel Buildings[M]. Chicago:American Institute of Steel Construction, 2010.
[18] ASTM A6. Standard Specification for General Requirements for Rolled Structural Steel Bars. Plates, Shapes, and Sheet Piling[M]. Chicago:American Institute of Steel Construction, 2008.
[19] Open System for Earthquake Engineering Simulation (OpenSees) Framework-Version 2.5. Pacific Earthquake Engineering Research Center, University of California, Berkeley. http://opensees.berkeley.edu.
[20] FILIPPOU F C, POPOV E P, BERTERO V V. Report EERC 83-19:Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints[M]. Berkeley:Earthquake Engineering Research Center, University of California, 1983.
[21] LEWIS G R. Replaceable shear and flexural links for the linked column frame system[D]. Portland:Portland State University, 2010.
[22] LIGNOS D G, KRAWINKLER H. Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading[J]. Journal of Structural Engineering, 2010, 137(11):1291-1302.
[23] RICLES J M, FISHER J W, LU L W, et al. Development of improved welded moment connections for earthquake-resistant design[J]. Journal ofConstructional Steel Research, 2002, 58(5):565-604.
[24] Pacific Earthquake Engineering Research Center (PEER). Ground Motion Database, Univ. of California, Berkeley, CA, .

备注/Memo

备注/Memo:
收稿日期:2017-11-16;改回日期:2018-10-15。
基金项目:国家自然科学基金(51078328),土木工程防灾国家重点实验室开放课题基金(SLDRCE16-04)
作者简介:李天翔(1990-),男,博士,从事钢结构抗震研究.E-mail:zjultx@outlook.com
更新日期/Last Update: 1900-01-01