ZHOU Ying,SHAN Huiwei,XING Lili,et al.Study on vulnerability of Shanghai Tower under combined actions of wind and earthquake[J].,2020,(02):001-11.





Study on vulnerability of Shanghai Tower under combined actions of wind and earthquake
周颖1 单慧伟1 邢丽丽1 赵雪莲12
1. 同济大学 结构防灾减灾工程系 上海 200092;
2. 华东建筑设计研究院有限公司 上海 200002
ZHOU Ying1 SHAN Huiwei1 XING Lili1 ZHAO Xuelian12
1. Department of Disaster Mitigation for Structures in Tongji University, Shanghai 200092, China;
2. East China Architectural Design & Research Institute, Shanghai 200002, China
shanghai towerfrequency-wave number spectrumcombined actions of wind and earthquakenonlinear dynamic time-history analysisvulnerability
随着城市人口的增加,越来越多的超高层建筑在中国各大城市涌现,在其全寿命周期内不可避免的会遭受风甚至地震等多灾害的作用。以上海中心大厦为分析模型,根据其场地条件,采用Benowitez在2015年提出的1种基于随机波的模型方法模拟不同高度处具有空间相关性的脉动风荷载时程。通过对Perform 3D有限元软件建立的上海中心大厦模型进行非线性动力时程分析,研究地震和风耦合作用下对于结构性能的影响,并基于多灾害需求生成结构在地震和风耦合作用下的易损性曲面来研究结构的抗振可靠度。结果表明:结构的响应和易损性随着风速和PGA的增大而显著增大;随着风速的增大结构的响应和易损性均有增大的趋势,但随着地震动的增大,风荷载对结构响应和易损性影响逐步减小。
With the expansion of urban population, more and more super high-rise buildings are springing up in big cities. During their whole life cycle, these buildings will inevitably suffer from multiple hazards such as the wind and even earthquake. Based on the analysis model of Shanghai Tower and its site conditions, this paper adopts the model method based on random wave proposed by Benowitz in 2015 to simulate the fluctuating wind load with spatial correlation at different heights of the structure. Through the nonlinear dynamic time-history analysis of Shanghai Tower model established with Perform 3D, the influence of the combined actions of the seismic and wind loads on the structure was studied. Based on the multi-hazard demand, the vulnerability surface of the structure under the combined actions of seismic and wind loads is generated to study the anti-vibration reliability of the structure. It is illustrated that the structural responses and vulnerability increase gradually with the wind speed and peak ground acceleration (PGA). With the increase of the wind speed, the responses and vulnerability tend to increase, but with the increase of the ground motion, the influence of the wind becomes smaller.


[1] 吕西林, 程明. 超高层建筑结构体系的新发展[J]. 结构工程师, 2008, 24(2):99-106. LU Xilin, CHENG Ming. Recent development of structural systems for super tall buildings[J]. Structural Engineers, 2008, 24(2):99-106. (in Chinese)
[2] 尹东屏, 郑江蓉, 赵凯. 中国中强地震与天气异常探讨[J]. 自然灾害学报, 1999(1):98-104. YIN Dongping, ZHENG Jiangrong, ZHAO Kai. Research on relation between moderate and strong earthquake and climate anomaly in China[J]. Journal of Natural Disasters, 1999(1):98-104. (in Chinese)
[3] ASAREH M A, SCHONBERG W, VOLZ J. Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines[J]. Renewable Energy, 2016, 86:49-58.
[4] MO R, KANG H, LI M, et al. Seismic fragility analysis of monopile offshore wind turbines under different operational conditions[J]. Energies, 2017, 10(7):1037.
[5] 刘杨, 李宏男, 李超,等. 风与地震耦合作用下钢管混凝土框架-防屈曲支撑结构体系易损性研究[J]. 土木工程学报, 2019(2):59-65. LIU Yang, LI Hongnan, LI Chao, et al. The study on the vulnerability of the concrete stilled steel tubular frame with buckling-restrained braces structure under the coupling of wind and earthquake[J]. China Civil Engineering Journal, 2019(2):59-65. (in Chinese)
[6] BENOWITZ B A, DEODATIS G. Simulation of wind velocities on long span structures:A novel stochastic wave based model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147:154-163.
[7] 丁洁民, 巢斯, 赵昕, 等. 上海中心大厦大厦结构分析中若干关键问题[J]. 建筑结构学报, 2010, 31(6):122-131. DING Jiemin, CHAO Si, ZHAO Xin, et al. Critical issues of structural analysis for the Shanghai center project[J]. Journal of Building Structure, 2010, 31(6):122-131. (in Chinese)
[8] RAMAMOORTY S K, GARDONI P, BRACCI J M. Probabilistic demand models and fragility curves for reinforced concrete frames[J]. Journal of Structural Engineering, 2006, 132(10):1563-1572.
[9] GB50009-2012建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB 50009-2012 Load Code for the Design of Building Structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[10] 50011-2010建筑结构抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010 Code for Seismic Design of Buildings[S]. Beijing:China Building & Industry Press, 2012. (in Chinese)
[11] MANDER J A B, PRIESTLY M J N, Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[12] 丁洁民, 巢斯, 吴宏磊, 等. 组合结构构件在上海中心大厦大厦中的应用与研究[J]. 建筑结构, 2011(12):66-72. DING Jiemin, CHAO Si, WU Honglei, et al. Application and research of steel-concrete mixed structure in Shanghai Tower[J]. Building Structure, 2011(12):66-72. (in Chinese)
[13] 陈俊儒, 吕西林. 上海中心大厦大厦脉动风荷载模拟研究[J]. 力学季刊, 2010, 31(1):92-100. CHEN Junru, LU Xilin. Simulation of fluctuating wind load of shanghai center tower[J]. Chinese Quarterly of Mechanics, 2010, 31(1):92-100. (in Chinese)
[14] 卜一, 吕西林, 周颖, 等. 采用增量动力分析方法确定高层混合结构的性能水准[J]. 结构工程师, 2009(02):81-88. BO Yi, LUXinlin, ZHOU Ying, et al. Studies on the multi-levels of Hybird structures using incremental dynamic analysis[J]. Structural engineers, 2009(02):81-88. (in Chinese)
[15] 周颖, 励勐劼. 增量动力分析地震动强度参数研究综述[J]. 结构工程师, 2014(6):199-204. ZHOU Ying, LIMengjie. State-of-the-art of intensity measures for incremental dynamic analysis[J]. Structural Engineers, 2014(6):199-204. (in Chinese)
[16] 何益斌, 李艳, 沈蒲生. 基于性能的高层混合结构地震易损性分析[J]. 工程力学, 2013(8):150-155+170. HE Yibin, LI Yan, SHEN Pusheng. Performance-based seismic fragility analysis of tall hybrid structures[J]. Engineering Mechanics, 2013(8):150-155+170. (in Chinese)
[17] 周颖, 李宏描, 邢丽丽. 混合控制消能减震伸臂桁架上海中心大厦抗震性能研究[J]. 振动与冲击, 2016, 35(21):188-195. ZHOU Ying, LI Hongmiao, XING Lili. Aseismic performance of shanghai center with hybrid control energy dissipation outriggers[J]. Journal of Vibration and Shock, 2016, 35(21):188-195. (in Chinese)
[18] 刘晶波, 刘阳冰, 闫秋实, 等. 基于性能的方钢管混凝土框架结构地震易损性分析[J]. 土木工程学报, 2010(2):39-47. LIU Jingbo, LIU Yangbing, YAN Qiushi,, et al.Performance-based seismic fragility analysis of CFST frame structures[J]. China Civil Engineering Journal, 2010(2):39-47. (in Chinese)
[19] 吕大刚, 王光远. 基于可靠度和灵敏度的结构局部地震易损性分析[J]. 自然灾害学报, 2006, 15(4):157-162. LV Dagang, WANG Guangyuan. Local seismic fragility analysis of structures based on reliability and sensitivity[J]. Journal of Natural Disasters, 2006, 15(4):157-162.
[20] DUTHINH D, SIMU E. Safety of structures in strong winds and earthquake:multihazard considerations[J]. Journal of Structures Engineering, 2010, 136(3):330-333.
[21] WU J R, LI Q S. Outrigger braced structures subjected to equivalent static seismic loading[J]. The Structural Design of Tall and Special Buildings, 2013(12):155-176.
[22] 刘锡良, 周颖. 风荷载的几种模拟方法[J]. 工业建筑, 2005, 35(5):81-84. LIU Xiliang, ZHOU Ying. Numerical simulation methods of wind load[J]. Industrial Construction, 2005, 35(5):81-84. (in Chinese)
[23] 王之宏. 风荷载的模拟研究[J]. 建筑结构学报, 1994(1):44-52. WANG Zhihong. Simulation of wind loading[J]. Journal of Building Structure, 1994(1):44-52. (in Chinese)
[24] 赵宪忠, 王斌, 陈以一,等. 上海中心大厦大厦伸臂桁架与巨柱和核心筒连接的静力性能试验研究[J]. 建筑结构学报, 2013(2):24-32. ZHAO Xianzhong, WANG Bin, CHEN Yiyi, et al. Monotonic static tests on outrigger truss and its connection with mega column and core tube of the shanghai tower[J]. Journal of Building structures, 2013(2):24-32. (in Chinese)
[25] 吕西林, 姜淳, 蒋欢军. 超高层建筑结构benchmark模型及其地震反应分析[J]. 结构工程师, 2015(4):100-107. LV Xilin, JIANG Chun, JIANG Huanjun. A benchmark model of mega-tall buildings and analysis of its seismic responses[J]. Structural Engineers, 2015(4):100-107.(in Chinese)
[26] 张宁, 何宝明, 米力, 等. 最不利主余震序列型地震动作用下RC框架结构易损性研究[J]. 世界地震工程, 2018(2):181-189. ZHANG Ning, HE Baoming, MI Li, et al. Fragility analysis for RC frame structure under the most unfavorable mainshock-aftershock sequence-type ground motions[J]. World Earthquake Engineering, 2018(2):181-189.(in Chinese)


更新日期/Last Update: 1900-01-01