[1]刘汉泉,曲哲.建筑内部物品滑移破坏易脆性分析中的楼面运动强度指标[J].世界地震工程,2020,(02):085-91.
 LIU Hanquan,QU Zhe.An intensity measure of floor motions for seismic fragility analysis of sliding contents in buildings[J].,2020,(02):085-91.
点击复制

建筑内部物品滑移破坏易脆性分析中的楼面运动强度指标
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2020年02期
页码:
085-91
栏目:
出版日期:
2020-04-10

文章信息/Info

Title:
An intensity measure of floor motions for seismic fragility analysis of sliding contents in buildings
作者:
刘汉泉 曲哲
中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点试验室, 河北 三河 065201
Author(s):
LIU Hanquan QU Zhe
Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Mechanical Engineering, China Earthquake Administration, Sanhe 065201, China
关键词:
内部物品楼面运动强度指标工程需求参数易脆性曲线
Keywords:
contentsfloor motionintensity measureengineering demand parametersfragility curve
分类号:
TU241.99
摘要:
合理选择建筑楼面运动强度指标是对建筑内部物品进行易脆性分析的基础。以建筑内部物品的滑移破坏为研究对象,通过单自由度简化模型模拟内部物品在地震引起的楼面运动作用下的滑移反应,并根据刚体在矩形脉冲作用下最大滑移距离的解析解,修正了目前常用的楼面运动强度指标。分析结果表明,物品在地震引起的楼面运动作用下的最大滑移距离远小于矩形脉冲作用下的解析解,且表现出相当大的离散性。未修正的楼面运动强度指标和最大滑移量之间在对数空间上呈比较明显的双线性关系,修正后的强度指标则与最大滑移量在对数空间上具有更好的线性关系。
Abstract:
The basis of seismic fragility analysis of sliding contents in buildings is choosing reasonably an intensity measure of floor motions. Taking the hazard associated with free standing sliding contents in buildings as the research object, the response of the sliding contents under the floor motion caused by the earthquake is simulated by a single-degree-of-freedom simplified model. The commonly used intensity measure of floor motions is modified by an analytical solution of the maximum sliding distance of a rigid body under a rectangular pulse. The results show that the maximum sliding distance of contents under the floor motion caused by the earthquake is much smaller than the analytical solution under a rectangular pulse, and it shows considerable dispersion. The relationship between the uncorrected intensity measure and the maximum sliding distance is obviously bilinear in logarithmic regression. The result is changed from bilinear to linear when choosing the modified intensity measure, which leads to better results.

参考文献/References:

[1] 叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9-22. YE Lieping, MA Qianli, MIAO Zhiwei. Study on seismic intensity index for structural seismic analysis[J]. Earthquake Engineering and Engineering Vibration, 2009,29(4):9-22.(in Chinese)
[2] ISHIYAMA Y. Motions of rigid bodies and criteria for overturning by earthquake excitations[J]. Earthquake Engineering & Structural Dynamics, 1982, 10(5):635-650.
[3] SHENTON III H W. Criteria for initiation of slide, rock, and slide-rock rigid-body modes[J]. Journal of Engineering Mechanics, 1996,122(7), 690-693.
[4] NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Géotechnique,1965,15(2), 139-160.
[5] GAZETAS G, GARINI E, BERRILL J B, et al. Sliding and overturning potential of Christchurch 2011 earthquake records[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14):1921-1944.
[6] KONSTANTINIDIS D, MAKRIS N. Experimental and analytical studies on the response of freestanding laboratory equipment to earthquake shaking[J]. Earthquake Engineering and Structural Dynamics,2009, 38(6):827-848.
[7] KONSTANTINIDIS D, NIKFAR F. Seismic response of sliding equipment and contents in base-isolated buildings subjected to broadband ground motions[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(6):865-887.
[8] NIKFAR F, KONSTANTINIDIS D. Peak sliding demands on unanchored equipment and contents in base-isolated buildings under pulse excitation[J]. Journal of Structural Engineering, 2017, 143(9):04017086.
[9] NAGAO T, KAGANO H, HAMAGUCHI K. Full-scale shaking table test on furnitures subjected to long-period earthquake motions[C]//15th World Conference on Earthquake Engineering, Lisbon, Portugal. 2012.
[10] YEOW T Z, MACRAE G A, DHAKAL R P, et al. Validating the sliding mechanics of office-type furniture using shake-table experiments[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2018, 51(1):1-11.
[11] LOPEZ G D, SOONG TT. Sliding fragility of block-type non-structural components. Part 1:unrestrained components[J]. Earthquake Engineering and Structural Dynamics 2003; 32(1):111-129
[12] MAKRIS N, BLACKl C J. Dimensional analysis of rigid-plastic and elastoplastic structures under pulse-type excitations[J]. Journal of Engineering Mechanics, 2004, 130(9):1006-1018.
[13] CHAUDHURI S R, HUTCHINSON T C. Characterizing frictional behavior for use in predicting the seismic response of unattached equipment[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7-10):591-604.
[14] GESUALDO A, IANNUZZO A, MINUTOLO V, et al. Rocking of freestanding objects:theoretical and experimental comparisons[J]. Journal of Theoretical and Applied Mechanics, 2018, 56.

备注/Memo

备注/Memo:
收稿日期:2020-01-28;改回日期:2020-02-17。
基金项目:国家重点研发计划课题(2018YFC1504602),黑龙江省自然科学基金杰出青年项目(JQ2019E005)
作者简介:刘汉泉(1994-),男,硕士研究生,主要从事建筑内部物品的地震易脆性模型方面研究.E-mail:liu_hanquan@163.com
通讯作者:曲哲(1983-),男,工学博士,研究员,主要从事建筑结构减隔震方面的研究.E-mail:quz@iem.ac.cn
更新日期/Last Update: 1900-01-01