[1]王子龙,任文杰,杨新磊,等.基于能量原理的粘滞阻尼器附加阻尼系数分配方法研究[J].世界地震工程,2020,(03):027-37.
 WANG Zilong,REN Wenjie,YANG Xinlei,et al.Research on additional damping coefficient distribution method of viscous damper based on energy theory[J].,2020,(03):027-37.
点击复制

基于能量原理的粘滞阻尼器附加阻尼系数分配方法研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2020年03期
页码:
027-37
栏目:
出版日期:
2020-08-30

文章信息/Info

Title:
Research on additional damping coefficient distribution method of viscous damper based on energy theory
作者:
王子龙1 任文杰1 杨新磊23 陈博文1
1. 河北工业大学 土木与交通学院, 天津 300401;
2. 天津城建大学 土木工程学院, 天津 300384;
3. 天津市土木建筑结构防护与加固重点试验室, 天津 300384
Author(s):
WANG Zilong1 REN Wenjie1 YANG Xinlei23 CHEN Bowen1
1. School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China;
2. School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, China;
3. Tianjin Key Laboratory of Civil Buildings Protection and Reinforcement, Tianjin 300384, China
关键词:
粘滞阻尼器消能减震设计方法阻尼系数分配方式
Keywords:
viscous damperenergy dissipationdesign proceduredamping coefficientdistribution method
分类号:
TU352.1
摘要:
以线性粘滞阻尼器加固剪切型规则框架结构为研究对象,基于能量原理提出附加阻尼系数正比于层间位移平方的分配方式。以六层和十二层钢筋混凝土框架为例,以确保结构在中震时保持弹性状态为设计目标,分别采用附加阻尼系数正比于层间位移平方的分配方式以及现有的分配方式,对结构进行消能减震设计。计算结果表明:有控结构均满足中震不坏的要求,层间位移角限值均未超过1/550,减震效果良好;附加阻尼系数正比于层间位移平方的分配方式得出的总阻尼系数最小,为最经济的设计结果。
Abstract:
Based on the energy theory, the method in which the additional damping coefficient is proportional to the square of story drift is proposed for the linear viscous damper reinforced shear-type regular frame. Taking the six-story and twelve-story reinforced concrete frames as an example, both the the proposed method and the existing method are used to design the damped structures, making sure that the structures remain elastic under moderate-intensity earthquakes. The results show that the structures are free of damage under moderate-intensity earthquakes and their story drift angles are within 1/550. The proposed method produces the smaller damping coefficients, and therefore is more economical.

参考文献/References:

[1] YAO J P T. Concept of structure control[J]. Journal of Structure Division, ASCE, 1972, 98(7):1567-1574.
[2] 周云. 耗能减震加固技术与设计方法[M]. 北京:科学出版社,2006. ZHOU Yun. Reinforcement and Design Method of Energy Dissipation[M].Beijing:Science Press,2006. (in Chinese)
[3] UBC. Uniform Building Code[S]. Whittier, California:International Conference of Building Officials, 1997.
[4] ATC-40. SeismicEvaluation and Retrofit of Concrete Buildings[S]. Redwood City, California:Applied Technology Council,1996.
[5] FEMA-273. NEHRP Guidelines for the Seismic Rehabilitationof Buildings[S].Redwood City, California:Applied Technology Council (ATC-33 Project), 1997.
[6] 日本隔震结构协会. 被动减震结构设计·施工手册[M]. 蒋通. 北京:中国建筑工业出版社, 2008. Japan Seismic Association. Passive Damping Structure Design·Construction HandBook[M].Jiang T. Beijing:China Architecture & Building Press,2008.(in Chinese)
[7] LIN Y, TSAI M H, HWANG J S, et al. Direct displacement-based design for building with passive energy dissipation systems[J]. Journal of Engineering Structures, 2003, 25(1):25-37.
[8] 周云, 安宇, 梁兴文. 基础隔震结构基于位移的设计方法[J]. 广州大学学报,2002,1(1):75-79. ZHOU Yun, AN Yu, LIANGXingwen. A based-displacement design method of base-isolated structures[J]. Journal of Guangzhou University,2002, 1(1):75-79.(in Chinese)
[9] 李钢, 李宏男. 基于位移的消能减震结构抗震设计方法[J].工程力学,2007,24(9):88-94. LI Gang,LI Hongnan. Direct displacement-based design for buildings with passive energy dissipation devices[J]. Journal of Engineering Mechanics,2007, 24(9):88-94.(in Chinese)
[10] 刘鹏飞,刘伟庆,王曙光,等. 基于位移的减震结构设计方法研究[J]. 世界地震工程,2009,25(1):43-47. LIU Pengfei, LIU Weiqing, WANG Shuguang, et al. Study on displacement-based design method for energy dissipation structures[J]. Journal of World Earthquake Engineering,2009, 25(1):43-47. (in Chinese)
[11] 刘鹏飞,刘伟庆,王曙光,等. 非线性黏滞阻尼减震结构基于位移的设计方法[J]. 世界地震工程,2009,25(4):167-173. LIU Pengfei, LIU Weiqing, WANG Shuguang, et al. Displacement-based design method for energy dissipation structures with nonlinear viscous dampers[J]. Journal of World Earthquake Engineering, 2009, 25(4):167-173. (in Chinese)
[12] SULLIVAN T J, LAGO A. Towards a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers[J]. Journal of Engineering Structures, 2012, 35:140-148.
[13] 肖庆峰, 陈妍. 房屋结构设计中减震阻尼系数优化探讨[J]. 门窗,2014,225-228. XIAO Qingfeng, CHEN Yan. Discussion on optimization of damping coefficient in building structure design[J].Journal of Doors & Windows, 2014, 225-228. (in Chinese)
[14] 李波, 赵均海, 梁兴文. 附加粘滞阻尼器结构基于性能的抗震设计[J]. 世界地震工程,2009,25(3):91-96. LI Bo, ZHAO Junhai, LIANG Xingwen. Performance-based seismic design of a structure with supplemental viscous dampers[J]. Journal of World Earthquake Engineering,2009, 25(3):91-96.(in Chinese)
[15] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB50011-2010[S].北京:中国建筑工业出版社,2016. Ministry of Housing and Urban-Rural Development of the People’ Republic of China. Code for Seismic Design of Buildings:GB50011-2010[S].Beijing:China Architecture & Building Press,2016.(in Chinese)
[16] 翁大根, 张超, 吕西林, 等. 附加黏滞阻尼器减震结构实用设计方法研究[J]. 振动与冲击,2012,31(12):81-88. WENG Dagen, ZHANG Chao, Lü Xilin, et al. Practical design procedure for a energy-dissipated structure with viscous dampers[J]. Journal of Vibration and Shock, 2012, 31(12):81-88. (in Chinese)
[17] 翁大根, 夏静德, 任晓崧. 消能减震技术在学校建筑的框架结构抗震加固中的应用[J]. 土木建筑与环境工程,2010,32(增2):418-423. WENG Dagen, XIA Jingde, REN Xiaosong. Application of energy dissipation and shock absorption technology in seismic strengthening of frame structure of school buildings[J]. Journal of Civil, Architectural&Environmental Engineering, 2010,32(S2):418-423. (in Chinese)
[18] 白顶有, 王泽军, 冯伟, 等. 框架结构侧移曲线的泛函推导和目标位移确定[J]. 世界地震工程,2010,26(2):201-206. BAI Dingyou, WANG Zejun, FENG Wei, et al. Functional deduction of lateral displacement curve of frame structure and determination method of target lateral displacement[J]. Journal of World Earthquake Engineering, 2010, 26(2):201-206. (in Chinese)
[19] PRIESTLEY MJN, CALVI GM, KOWALSKY MJ. Direct displacement-based seismic design. Pavia, Italy:IUSS Press; 2007.
[20] CALVI GM, SULLIVAN TJ. A model code for displacement-based seismic design of structures:draft issued for public comment. Pavia, Italy:IUSS Press, 2009.
[21] PETTINGA JD, PRIESTLEY MJN. Dynamic behaviour of reinforced concrete frames designed with direct displacement-based design. Report No. ROSE 2005/02, IUSS press, 2005.
[22] HOUSNER G W. Limit design of structures to resist earthquaks[J]. Proc of Wcee, 1956,5(5):1-13.
[23] HOUSNER G W, Jennings P C. Generation ofartificial earthquakes[J]. Journal of the Engineering Mechanics Division, 1964,90(EM1):113-123.
[24] HOUSNER G W. Behavior of structures during earthquake[J]. Journal of the Engineering Mechanics Division, 1959,85(4):109-129.
[25] 中华人民共和国住房和城乡建设部.建筑消能减震技术规程:JGJ 297-2013[S].北京:中国建筑工业出版社,2013 Ministry of Housing and Urban-Rural Development of the People’ Republic of China. Technical Specification for Seismic Energy Dissipation of Buildings:JGJ 297-2013[S].Beijing:China Architecture & Building Press,2013.(in Chinese)
[26] 梁兴文, 黄雅捷, 杨其伟. 钢筋混凝土框架结构基于位移的抗震设计方法研究[J]. 土木工程学报,2005,38(9):53-60. LIANG Xingwen, HUANG Yajie, YANG Qiwei. Displacement-based seismic design method of RC frames[J]. China Civil Engineering Journal, 2005,38(9):53-60. (in Chinese)
[27] 刘峰, 黄镇, 王成志. X形软钢阻尼器在商业建筑消能减震设计中的应用[C].第十届中日建筑结构技术交流会论文集,南京. LIU Feng, HUANG Zhen, WANG Chengzhi. Application of X-shaped mild steel damper in energy dissipation design of commercial buildings[C]. Proceedings of the 10th China-Japan Building Structure Technology Exchange Conference,Nanjing. (in Chinese)
[28] 郭太军,薛瑞杰. 长周期桥梁地震设计谱阻尼修正系数研究[J].工程抗震与加固改造,2011,33(6):128-131. GUO Taijun, XUE Ruijie. Study on damping modification factor of response spectrum for long-period bridge[J].Journal of Earthquake Resistant Engineering and Retrofitting,2011,33(6):128-131. (in Chinese)

相似文献/References:

[1]陈兴冲,张永亮,李子奇.矮塔斜拉桥的减震方案对比研究[J].世界地震工程,2010,(03):016.
 CHEN Xingchong,ZHANG Yongliang,LI Ziqi.Research on seismic response reduction of a cable-stayed bridge with low towers[J].,2010,(03):016.
[2]汪志昊,陈政清.高层建筑结构中粘滞阻尼器的新型安装方式[J].世界地震工程,2010,(04):135.
 WANG Zhihao,CHEN Zhengqing.New installations of viscous dampers in high rise buildings[J].,2010,(03):135.
[3]刘朝福,杨起,保石才.粘滞阻尼器在高墩连续梁桥抗震设计中的应用[J].世界地震工程,2011,(04):129.
 LIU Chaofu,YANG Qi,BAO Shicai.Application of viscous dampers to seismic response control of a high-pier continuous bridge[J].,2011,(03):129.
[4]谭平,周云,周福霖.大底盘多塔楼结构的混合隔震控制[J].世界地震工程,2007,(02):012.
 TAN Ping,ZHOU Yun,ZHOU Fulin.Hybrid isolation control for multi-tower structures with a large podium[J].,2007,(03):012.
[5]刘鹏飞,刘伟庆,王曙光,等.基于位移的减震结构设计方法研究[J].世界地震工程,2009,(01):043.
 LIU Pengfei,LIU Weiqing,WANG Shuguang,et al.Study on displacement-based design method for energy dissipation structures[J].,2009,(03):043.
[6]薛素铎,蔡炎城,李雄彦,等.被动控制技术在大跨空间结构中的应用概况[J].世界地震工程,2009,(03):025.
 XUE Suduo,CAI Yancheng,LI Xiongyan,et al.The present situation on application of passive control technology in long-span spatial structures[J].,2009,(03):025.
[7]娄锋.大跨度斜拉桥阻尼器参数分析[J].世界地震工程,2015,(01):129.
 LOU Feng.Viscous damper parameter analysis on a long-span cable-stayed bridge[J].,2015,(03):129.
[8]王雷,徐艳.榕江大桥主桥振动台试验研究[J].世界地震工程,2015,(03):039.
 WANG Lei,XU Yan.Shaking table test and analysis of main bridge of Rongjiang Bridge[J].,2015,(03):039.
[9]赵继栋,张永亮,陈兴冲,等.基于粘滞阻尼器的高墩大跨铁路连续刚构桥减震研究[J].世界地震工程,2016,(02):093.
 ZHAO Jidong,ZHANG Yongliang,CHEN Xingchong,et al.Research on seismic reduction of tall-pier and long-span railway continuous rigid-framed bridge based on viscous damper[J].,2016,(03):093.
[10]刘正楠,陈兴冲,马华军,等.高速铁路大跨长联连续梁桥减隔震方案优化研究[J].世界地震工程,2017,33(04):129.
 LIU Zhengnan,CHEN Xingchong,MA Huajun,et al.Optimization research on the seismic isolation schemes of a long unit and large span continuous bridge on high-speed railway[J].,2017,33(03):129.
[11]况浩伟,潘文,叶燎原.减震结构粘滞阻尼器的快速设计方法[J].世界地震工程,2016,(04):038.
 KUANG Haowei,PAN Wen,YE Liaoyuan.Rapid design of viscous dampers used for seismic structures[J].,2016,(03):038.

备注/Memo

备注/Memo:
收稿日期:2020-01-17;改回日期:2020-06-15。
基金项目:国家自然科学基金面上项目(51878240)
作者简介:王子龙(1993-),硕士,主要从事结构抗震与减震控制方面的研究.E-mail:282456899@qq.com
通讯作者:任文杰(1972-),教授,博士,主要从事结构抗震与减震控制方面的研究.E-mail:rwjwlq@126.com
更新日期/Last Update: 1900-01-01