[1]邢心魁,林揽日,覃荷瑛.耗能型防落梁装置铝蜂窝缓冲器轴向吸能特性研究[J].世界地震工程,2020,(03):057-68.
 XING Xinkui,LIN Lanri,QIN Heying.Research on the axial energy absorption characteristics of aluminum honeycomb buffers in energy dissipative unseating prevention device[J].,2020,(03):057-68.
点击复制

耗能型防落梁装置铝蜂窝缓冲器轴向吸能特性研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2020年03期
页码:
057-68
栏目:
出版日期:
2020-08-30

文章信息/Info

Title:
Research on the axial energy absorption characteristics of aluminum honeycomb buffers in energy dissipative unseating prevention device
作者:
邢心魁123 林揽日123 覃荷瑛123
1. 桂林理工大学有色金属矿产勘查与资源高效利用协同创新中心, 广西 桂林 541004; 2. 桂林理工大学 土木与建筑工程学院, 广西 桂林 541004; 3. 广西岩土力学与工程重点实验室, 广西 桂林 541004
Author(s):
XING Xinkui123 LIN Lanri123 QIN Heying123
1. Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, China;
2. College of Civil and Architecture Engineering, Guilin University of Technology, Guilin 541004, China;
3. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin 541004, China
关键词:
防落梁装置铝蜂窝缓冲器轴向压缩应力有限元模拟吸能特性
Keywords:
energy dissipative unseating prevention devicealuminum honeycomb buffertheoretical analysis of axial compressive stressnumerical simulationenergy absorption characteristics
分类号:
U443.36+2
摘要:
耗能型防落梁装置是由普通拉索式防落梁装置改进而来的,其主要吸能部件为吸能控制管,由扩径管和铝蜂窝缓冲器组成。为了给铝蜂窝缓冲器的设计与优化提供可靠的理论依据,建立了铝蜂窝轴向压缩简化模型,对其轴向压缩应力进行了分析、推导并采用有限元模拟和借鉴相关文献试验数据进行了验证,同时分析了加载速率对铝蜂窝材料吸能特性的影响。此外分析了铝蜂窝芯铝箔厚度和蜂窝边长对其吸能特性的影响,并通过桥梁工程实例来分析和评价铝蜂窝缓冲器在吸能控制管中的吸能作用。研究结果表明:铝蜂窝轴向压缩简化模型精度较高,理论计算值相对于有限元计算值的偏差平均值为4.53%,相对于文献试验值的偏差平均值为6.47%;随着加载速率的提高,铝蜂窝材料的单位体积吸能值、初始峰值应力和屈服平均应力均有所提高;在铝蜂窝芯铝箔厚度或蜂窝边长一定的情况下,两者之比β值越大,铝蜂窝缓冲器吸能性能越好;配置了铝蜂窝缓冲器的吸能控制管,其总吸能值平均增大率为18.56%,最大增大率为29.51%,吸能性能提升最大可达近30%,在消耗地震能量方面将发挥显著的作用。
Abstract:
The energy dissipative unseating prevention device was improved from the ordinary cable-type unseating prevention device. Its main energy absorption component is an energy absorption control tube, which is composed of an enlarged diameter tube and an aluminum honeycomb buffer. In order to provide a reliable theoretical basis for the design and optimization of aluminum honeycomb buffers, a simplified model of aluminum honeycomb axial compression was established, and its axial compressive stress is analyzed, derived and verified by using numerical simulation and reference data from relevant literature. At the same time, the effect of loading rate on the energy absorption characteristics was analyzed. Besides, the effects of aluminum honeycomb core aluminum foil thickness and honeycomb edge length on the energy absorption characteristics were analyzed and the effect of aluminum honeycomb buffer on energy absorption control tube was analyzed and evaluated by bridge engineering examples. The results show that the simplified model of aluminum honeycomb axial compression is accurate. The average deviation of the theoretical calculation from the value of numerical simulation is 4.53% and the average deviation from the experimental value in the literature is 6.47%. With the increase of the loading rate, the energy absorption per unit volume, the initial peak stress, and the average stress of the yield of the aluminum honeycomb materials have been improved. In the case where the thickness of the aluminum honeycomb core aluminum foil or the length of the honeycomb side is constant, the larger the ratio of the two, the better the energy absorption performance. The energy absorption control tube with aluminum honeycomb buffer is equipped with an average increase rate of total energy absorption value of 18.56% and a maximum increase rate of 29.51%, and the maximum increase rate of energy absorption performance of nearly 30%, which will play a significant role in the consumption of earthquake energy.

参考文献/References:

[1] SELNA L G, MALVAR L J, ZELINSKI R J. Bridge retrofit testing:Hinge cable restrainers[J]. Journal of Structural Engineering,1989,115, 920-934.
[2] 邢心魁, 王逸飞, 雷震霖, 等.吸能型连梁装置吸能部件结构设计及有限元分析[J].铁道建筑, 2019, 59(6):6-9. XING Xinkui, WANG Yifei, LEI Zhenlin, et al. Structural design and finite element analysis of energy-absorbing components of energy-absorbing unseating prevention devices[J]. Railway Engineering, 2019, 59(6):6-9.(in Chinese)
[3] 邢心魁, 李秦, 雷震霖.桥梁吸能型连梁装置控制管冲击轴向荷载与吸能形式[J].工程抗震与加固改造, 2019, 41(1):82-88. XING Xinkui, LI Qin, LEI Zhenlin. Study on impact load and energy absorption of control tube of energy-absorbing type continuous beam device[J]. Earthquake Resistant Engineering and Retrofitting, 2019, 41(1):82-88. (in Chinese)
[4] 邢心魁, 李亚, 朱元.新型能量吸收型落梁防止装置[J].公路, 2017, 62(10):97-100. XING Xinkui, LI Ya, ZHU Yuan. Novel energy-absorbing unseating prevention devices[J]. Highway, 2017, 62(10):97-100. (in Chinese)
[5] 卢志强. 载人登月飞行器用多级蜂窝缓冲器及全机软着陆冲击研究[D].哈尔滨工业大学, 2015. LU Zhiqiang. Research on soft landing impact of multilevel honeycomb buffer and the manned lunar flight[D]. Harbin Institute of Technology, 2015. (in Chinese)
[6] GUNES R, ARSLAN K. Development of numerical realistic model for predicting low-velocity impact response of aluminum honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials. 2015, 97(7):529-538.
[7] WIERZBICKI T. Crushing Analysis of Metal Honeycombs[J]. Int. J. Impact Eng, 1983, 1:157-174.
[8] GIBSON L J, ASHBY M F. Cellular Solid:Structure and properties[M]. 2nd ed. London:Cambridge University Press, 1997.
[9] 罗昌杰, 周安亮, 刘荣强, 等.金属蜂窝异面压缩下平均压缩应力的理论模型[J].机械工程学报, 2010, 46(18):52-59. LUO Changjie, ZHOU Anliang, LIU Rongqiang, et al. Average Compressive Stress Constitutive Equation of Honeycomb Metal under Out-of-plane Compression[J]. Journal of Mechanical Engineering, 2010, 46(18):52-59. (in Chinese)
[10] 齐佳旗, 段玥晨, 李成, 等.低速冲击下铝蜂窝夹层板的动态响应研究[J].玻璃钢/复合材料, 2019(5):5-11. QI Jiaqi, DUAN Yuechen, LI Cheng, et al. Dynamic response of aluminum honeycomb sandwich plate under low speed impact[J]. Fiber Reinforced Plastics/Composites, 2019(5):5-11. (in Chinese)
[11] 唐爽. 铝蜂窝静动态压缩行为研究[D].中南大学, 2014. TANG Shuang. The behavior of aluminum honeycomb under static and dynamic compression[D]. Central South University, 2014. (in Chinese)
[12] COWPER G R, SYMONDS P S. Strain-hardening and Strain-rate Effects in the Impact Loading of Cantilever Beams[R]. Brown University Dept. of Appl. Math., Technical Report 28, 1957.
[13] 赵寿根, 何著, 杨嘉陵, 等.几种航空铝材动态力学性能实验[J].北京航空航天大学学报, 2007, 33(8):982-985. ZHAO Shougen, HE Zhu, YANG Jialing, CHENG Wei. Experiment investigation of dynamic material property of aluminum alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8):982-985. (in Chinese)
[14] ZHAO Yapu, LIU Sheng. On the definition of coefficient of strain-rate sensitivity[J]. Chinese Journal of Aeronautics, 2001, 14(2):78-82.
[15] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading.[J]. Quarterly Journal of Mechanics & Applied Mathematics, 1959, (1):1.
[16] ABRAMOWICZ W,JONES N. Dynamical Axial Crushing of Circular Tubes[J]. Int. J. Impact Eng, 1984, 2(3):263-281.
[17] 日本道路协会,道路桥示方书(Ⅴ耐震设计篇)同解说[S].东京:日本道路协会, 2012. Japan Road Association, Japanese specification for highway bridges, V seismic design[S], 2012. (in Chinese)
[18] JTG/T B02-01-2008, 公路桥梁抗震设计细则[S].北京:人民交通出版社, 2008. JTG/T B02-01-2008, Guidelines for seismic design of highway bridges[S]. Beijing:China Communications Press, 2008. (in Chinese)
[19] GB/T 2089-2009, 普通圆柱螺旋拉伸弹簧尺寸及参数[S]. GB/T 2089-2009, Common coiled tension spring dimensions and parameters[S]. (in Chinese)
[20] 邢心魁, 王逸飞.桥梁吸能型连梁装置控制管吸能特性研究[J].工程抗震与加固改造,2017,39(5):137-142. XING Xinkui, WANG Yifei. Energy Absorption Characteristics Research of Control Tube About Bridge Energy-absorbing Unseating Prevention Device[J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(5):137-142. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2020-01-09;改回日期:2020-06-29。
基金项目:国家自然科学基金资助(项目批准号:51868013);广西科技重大专项(桂科AA18118008)
作者简介:邢心魁(1964-),男,教授,博士学位,主要从事地下工程、结构连接与锚固体系等的研究.E-mail:597983647@qq.com
通讯作者:覃荷瑛(1972-),女,教授,博士学位,主要从事工程结构新材料与结构智能健康检测的研究.E-mail:qinheyinglcx@163.com
更新日期/Last Update: 1900-01-01